wikimedia/mediawiki-core

View on GitHub
includes/libs/Diff/DiffEngine.php

Summary

Maintainability
F
1 wk
Test Coverage
<?php
/**
 * New version of the difference engine
 *
 * Copyright © 2008 Guy Van den Broeck <guy@guyvdb.eu>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 * http://www.gnu.org/copyleft/gpl.html
 *
 * @file
 * @ingroup DifferenceEngine
 */

namespace Wikimedia\Diff;

// FIXME: Don't use assert() in this file
// phpcs:disable MediaWiki.Usage.ForbiddenFunctions.assert

/**
 * This diff implementation is mainly lifted from the LCS algorithm of the Eclipse project which
 * in turn is based on Myers' "An O(ND) difference algorithm and its variations"
 * (http://citeseer.ist.psu.edu/myers86ond.html) with range compression (see Wu et al.'s
 * "An O(NP) Sequence Comparison Algorithm").
 *
 * This implementation supports an upper bound on the execution time.
 *
 * Some ideas (and a bit of code) are from analyze.c, from GNU
 * diffutils-2.7, which can be found at:
 *     ftp://gnudist.gnu.org/pub/gnu/diffutils/diffutils-2.7.tar.gz
 *
 * Complexity: O((M + N)D) worst case time, O(M + N + D^2) expected time, O(M + N) space
 *
 * @author Guy Van den Broeck, Geoffrey T. Dairiki, Tim Starling
 * @ingroup DifferenceEngine
 */
class DiffEngine {

    // Input variables
    /** @var string[] */
    private $from;
    /** @var string[] */
    private $to;
    /** @var int */
    private $m;
    /** @var int */
    private $n;

    /** @var int */
    private $tooLong;
    /** @var float */
    private $powLimit;

    /** @var int */
    protected $bailoutComplexity = 0;

    // State variables
    /** @var float */
    private $maxDifferences;
    /** @var bool */
    private $lcsLengthCorrectedForHeuristic = false;

    // Output variables
    /** @var int */
    public $length;
    /** @var array */
    public $removed;
    /** @var array */
    public $added;
    /** @var bool */
    public $heuristicUsed;

    /**
     * @param int $tooLong
     * @param float $powLimit
     */
    public function __construct( $tooLong = 2_000_000, $powLimit = 1.45 ) {
        $this->tooLong = $tooLong;
        $this->powLimit = $powLimit;
    }

    /**
     * Performs diff
     *
     * @param string[] $from_lines
     * @param string[] $to_lines
     * @throws ComplexityException
     *
     * @return DiffOp[]
     */
    public function diff( $from_lines, $to_lines ) {
        // Diff and store locally
        $this->diffInternal( $from_lines, $to_lines );

        // Merge edits when possible
        $this->shiftBoundaries( $from_lines, $this->removed, $this->added );
        $this->shiftBoundaries( $to_lines, $this->added, $this->removed );

        // Compute the edit operations.
        $n_from = count( $from_lines );
        $n_to = count( $to_lines );

        $edits = [];
        $xi = $yi = 0;
        while ( $xi < $n_from || $yi < $n_to ) {
            assert( $yi < $n_to || $this->removed[$xi] );
            assert( $xi < $n_from || $this->added[$yi] );

            // Skip matching "snake".
            $copy = [];
            while ( $xi < $n_from && $yi < $n_to
                    && !$this->removed[$xi] && !$this->added[$yi]
            ) {
                $copy[] = $from_lines[$xi++];
                ++$yi;
            }
            if ( $copy ) {
                $edits[] = new DiffOpCopy( $copy );
            }

            // Find deletes & adds.
            $delete = [];
            while ( $xi < $n_from && $this->removed[$xi] ) {
                $delete[] = $from_lines[$xi++];
            }

            $add = [];
            while ( $yi < $n_to && $this->added[$yi] ) {
                $add[] = $to_lines[$yi++];
            }

            if ( $delete && $add ) {
                $edits[] = new DiffOpChange( $delete, $add );
            } elseif ( $delete ) {
                $edits[] = new DiffOpDelete( $delete );
            } elseif ( $add ) {
                $edits[] = new DiffOpAdd( $add );
            }
        }

        return $edits;
    }

    /**
     * Sets the complexity (in comparison operations) that can't be exceeded
     * @param int $value
     */
    public function setBailoutComplexity( $value ) {
        $this->bailoutComplexity = $value;
    }

    /**
     * Adjust inserts/deletes of identical lines to join changes
     * as much as possible.
     *
     * We do something when a run of changed lines include a
     * line at one end and has an excluded, identical line at the other.
     * We are free to choose which identical line is included.
     * `compareseq' usually chooses the one at the beginning,
     * but usually it is cleaner to consider the following identical line
     * to be the "change".
     *
     * This is extracted verbatim from analyze.c (GNU diffutils-2.7).
     *
     * @param string[] $lines
     * @param string[] &$changed
     * @param string[] $other_changed
     */
    private function shiftBoundaries( array $lines, array &$changed, array $other_changed ) {
        $i = 0;
        $j = 0;

        assert( count( $lines ) == count( $changed ) );
        $len = count( $lines );
        $other_len = count( $other_changed );

        while ( 1 ) {
            /*
             * Scan forwards to find beginning of another run of changes.
             * Also keep track of the corresponding point in the other file.
             *
             * Throughout this code, $i and $j are adjusted together so that
             * the first $i elements of $changed and the first $j elements
             * of $other_changed both contain the same number of zeros
             * (unchanged lines).
             * Furthermore, $j is always kept so that $j == $other_len or
             * $other_changed[$j] == false.
             */
            while ( $j < $other_len && $other_changed[$j] ) {
                $j++;
            }

            while ( $i < $len && !$changed[$i] ) {
                assert( $j < $other_len && !$other_changed[$j] );
                $i++;
                $j++;
                while ( $j < $other_len && $other_changed[$j] ) {
                    $j++;
                }
            }

            if ( $i == $len ) {
                break;
            }

            $start = $i;

            // Find the end of this run of changes.
            while ( ++$i < $len && $changed[$i] ) {
                continue;
            }

            do {
                /*
                 * Record the length of this run of changes, so that
                 * we can later determine whether the run has grown.
                 */
                $runlength = $i - $start;

                /*
                 * Move the changed region back, so long as the
                 * previous unchanged line matches the last changed one.
                 * This merges with previous changed regions.
                 */
                while ( $start > 0 && $lines[$start - 1] == $lines[$i - 1] ) {
                    $changed[--$start] = 1;
                    $changed[--$i] = false;
                    // @phan-suppress-next-line PhanPluginLoopVariableReuse
                    while ( $start > 0 && $changed[$start - 1] ) {
                        $start--;
                    }
                    assert( $j > 0 );
                    while ( $other_changed[--$j] ) {
                        continue;
                    }
                    assert( $j >= 0 && !$other_changed[$j] );
                }

                /*
                 * Set CORRESPONDING to the end of the changed run, at the last
                 * point where it corresponds to a changed run in the other file.
                 * CORRESPONDING == LEN means no such point has been found.
                 */
                $corresponding = $j < $other_len ? $i : $len;

                /*
                 * Move the changed region forward, so long as the
                 * first changed line matches the following unchanged one.
                 * This merges with following changed regions.
                 * Do this second, so that if there are no merges,
                 * the changed region is moved forward as far as possible.
                 */
                while ( $i < $len && $lines[$start] == $lines[$i] ) {
                    $changed[$start++] = false;
                    $changed[$i++] = 1;
                    while ( $i < $len && $changed[$i] ) {
                        $i++;
                    }

                    assert( $j < $other_len && !$other_changed[$j] );
                    $j++;
                    if ( $j < $other_len && $other_changed[$j] ) {
                        $corresponding = $i;
                        while ( $j < $other_len && $other_changed[$j] ) {
                            $j++;
                        }
                    }
                }
            } while ( $runlength != $i - $start );

            /*
             * If possible, move the fully-merged run of changes
             * back to a corresponding run in the other file.
             */
            while ( $corresponding < $i ) {
                $changed[--$start] = 1;
                $changed[--$i] = 0;
                assert( $j > 0 );
                while ( $other_changed[--$j] ) {
                    continue;
                }
                assert( $j >= 0 && !$other_changed[$j] );
            }
        }
    }

    /**
     * @param string[] $from
     * @param string[] $to
     * @throws ComplexityException
     */
    protected function diffInternal( array $from, array $to ) {
        // remember initial lengths
        $m = count( $from );
        $n = count( $to );

        $this->heuristicUsed = false;

        // output
        $removed = $m > 0 ? array_fill( 0, $m, true ) : [];
        $added = $n > 0 ? array_fill( 0, $n, true ) : [];

        // reduce the complexity for the next step (intentionally done twice)
        // remove common tokens at the start
        $i = 0;
        while ( $i < $m && $i < $n && $from[$i] === $to[$i] ) {
            $removed[$i] = $added[$i] = false;
            unset( $from[$i], $to[$i] );
            ++$i;
        }

        // remove common tokens at the end
        $j = 1;
        while ( $i + $j <= $m && $i + $j <= $n && $from[$m - $j] === $to[$n - $j] ) {
            $removed[$m - $j] = $added[$n - $j] = false;
            unset( $from[$m - $j], $to[$n - $j] );
            ++$j;
        }

        $this->from = $newFromIndex = $this->to = $newToIndex = [];

        // remove tokens not in both sequences
        $shared = [];
        foreach ( $from as $key ) {
            $shared[$key] = false;
        }

        foreach ( $to as $index => &$el ) {
            if ( array_key_exists( $el, $shared ) ) {
                // keep it
                $this->to[] = $el;
                $shared[$el] = true;
                $newToIndex[] = $index;
            }
        }
        foreach ( $from as $index => &$el ) {
            if ( $shared[$el] ) {
                // keep it
                $this->from[] = $el;
                $newFromIndex[] = $index;
            }
        }

        unset( $shared, $from, $to );

        $this->m = count( $this->from );
        $this->n = count( $this->to );

        if ( $this->bailoutComplexity > 0 && $this->m * $this->n > $this->bailoutComplexity ) {
            throw new ComplexityException();
        }

        $this->removed = $this->m > 0 ? array_fill( 0, $this->m, true ) : [];
        $this->added = $this->n > 0 ? array_fill( 0, $this->n, true ) : [];

        if ( $this->m == 0 || $this->n == 0 ) {
            $this->length = 0;
        } else {
            $this->maxDifferences = ceil( ( $this->m + $this->n ) / 2.0 );
            if ( $this->m * $this->n > $this->tooLong ) {
                // limit complexity to D^POW_LIMIT for long sequences
                $this->maxDifferences = floor( $this->maxDifferences ** ( $this->powLimit - 1.0 ) );
            }

            /*
             * The common prefixes and suffixes are always part of some LCS, include
             * them now to reduce our search space
             */
            $max = min( $this->m, $this->n );
            for ( $forwardBound = 0; $forwardBound < $max
                && $this->from[$forwardBound] === $this->to[$forwardBound];
                ++$forwardBound
            ) {
                $this->removed[$forwardBound] = $this->added[$forwardBound] = false;
            }

            $backBoundL1 = $this->m - 1;
            $backBoundL2 = $this->n - 1;

            while ( $backBoundL1 >= $forwardBound && $backBoundL2 >= $forwardBound
                && $this->from[$backBoundL1] === $this->to[$backBoundL2]
            ) {
                $this->removed[$backBoundL1--] = $this->added[$backBoundL2--] = false;
            }

            $temp = array_fill( 0, $this->m + $this->n + 1, 0 );
            $V = [ $temp, $temp ];
            $snake = [ 0, 0, 0 ];

            $this->length = $forwardBound + $this->m - $backBoundL1 - 1
                + $this->lcs_rec(
                    $forwardBound,
                    $backBoundL1,
                    $forwardBound,
                    $backBoundL2,
                    $V,
                    $snake
            );
        }

        $this->m = $m;
        $this->n = $n;

        $this->length += $i + $j - 1;

        foreach ( $this->removed as $key => &$removed_elem ) {
            if ( !$removed_elem ) {
                $removed[$newFromIndex[$key]] = false;
            }
        }
        foreach ( $this->added as $key => &$added_elem ) {
            if ( !$added_elem ) {
                $added[$newToIndex[$key]] = false;
            }
        }
        $this->removed = $removed;
        $this->added = $added;
    }

    /**
     * @param int $bottoml1
     * @param int $topl1
     * @param int $bottoml2
     * @param int $topl2
     * @param array &$V
     * @param array &$snake
     * @return int
     */
    private function lcs_rec( $bottoml1, $topl1, $bottoml2, $topl2, &$V, &$snake ) {
        // check that both sequences are non-empty
        if ( $bottoml1 > $topl1 || $bottoml2 > $topl2 ) {
            return 0;
        }

        $d = $this->find_middle_snake( $bottoml1, $topl1, $bottoml2,
            $topl2, $V, $snake );

        // need to store these so we don't lose them when they're
        // overwritten by the recursion
        [ $startx, $starty, $len ] = $snake;

        // the middle snake is part of the LCS, store it
        for ( $i = 0; $i < $len; ++$i ) {
            $this->removed[$startx + $i] = $this->added[$starty + $i] = false;
        }

        if ( $d > 1 ) {
            return $len
            + $this->lcs_rec( $bottoml1, $startx - 1, $bottoml2,
                $starty - 1, $V, $snake )
            + $this->lcs_rec( $startx + $len, $topl1, $starty + $len,
                $topl2, $V, $snake );
        } elseif ( $d == 1 ) {
            /*
             * In this case the sequences differ by exactly 1 line. We have
             * already saved all the lines after the difference in the for loop
             * above, now we need to save all the lines before the difference.
             */
            $max = min( $startx - $bottoml1, $starty - $bottoml2 );
            for ( $i = 0; $i < $max; ++$i ) {
                $this->removed[$bottoml1 + $i] =
                    $this->added[$bottoml2 + $i] = false;
            }

            return $max + $len;
        }

        return $len;
    }

    /**
     * @param int $bottoml1
     * @param int $topl1
     * @param int $bottoml2
     * @param int $topl2
     * @param array &$V
     * @param array &$snake
     * @return int
     */
    private function find_middle_snake( $bottoml1, $topl1, $bottoml2, $topl2, &$V, &$snake ) {
        $from = &$this->from;
        $to = &$this->to;
        $V0 = &$V[0];
        $V1 = &$V[1];
        $snake0 = &$snake[0];
        $snake1 = &$snake[1];
        $snake2 = &$snake[2];
        $bottoml1_min_1 = $bottoml1 - 1;
        $bottoml2_min_1 = $bottoml2 - 1;
        $N = $topl1 - $bottoml1_min_1;
        $M = $topl2 - $bottoml2_min_1;
        $delta = $N - $M;
        $maxabsx = $N + $bottoml1;
        $maxabsy = $M + $bottoml2;
        $limit = min( $this->maxDifferences, ceil( ( $N + $M ) / 2 ) );

        // value_to_add_forward: a 0 or 1 that we add to the start
        // offset to make it odd/even
        if ( $M & 1 ) {
            $value_to_add_forward = 1;
        } else {
            $value_to_add_forward = 0;
        }

        if ( $N & 1 ) {
            $value_to_add_backward = 1;
        } else {
            $value_to_add_backward = 0;
        }

        $start_forward = -$M;
        $end_forward = $N;
        $start_backward = -$N;
        $end_backward = $M;

        $limit_min_1 = $limit - 1;
        $limit_plus_1 = $limit + 1;

        $V0[$limit_plus_1] = 0;
        $V1[$limit_min_1] = $N;
        $limit = min( $this->maxDifferences, ceil( ( $N + $M ) / 2 ) );

        if ( $delta & 1 ) {
            for ( $d = 0; $d <= $limit; ++$d ) {
                $start_diag = max( $value_to_add_forward + $start_forward, -$d );
                $end_diag = min( $end_forward, $d );
                $value_to_add_forward = 1 - $value_to_add_forward;

                // compute forward furthest reaching paths
                for ( $k = $start_diag; $k <= $end_diag; $k += 2 ) {
                    if ( $k == -$d || ( $k < $d
                            && $V0[$limit_min_1 + $k] < $V0[$limit_plus_1 + $k] )
                    ) {
                        $x = $V0[$limit_plus_1 + $k];
                    } else {
                        $x = $V0[$limit_min_1 + $k] + 1;
                    }

                    $absx = $snake0 = $x + $bottoml1;
                    $absy = $snake1 = $x - $k + $bottoml2;

                    while ( $absx < $maxabsx && $absy < $maxabsy && $from[$absx] === $to[$absy] ) {
                        ++$absx;
                        ++$absy;
                    }
                    $x = $absx - $bottoml1;

                    $snake2 = $absx - $snake0;
                    $V0[$limit + $k] = $x;
                    if ( $k >= $delta - $d + 1 && $k <= $delta + $d - 1
                        && $x >= $V1[$limit + $k - $delta]
                    ) {
                        return 2 * $d - 1;
                    }

                    // check to see if we can cut down the diagonal range
                    if ( $x >= $N && $end_forward > $k - 1 ) {
                        $end_forward = $k - 1;
                    } elseif ( $absy - $bottoml2 >= $M ) {
                        $start_forward = $k + 1;
                        $value_to_add_forward = 0;
                    }
                }

                $start_diag = max( $value_to_add_backward + $start_backward, -$d );
                $end_diag = min( $end_backward, $d );
                $value_to_add_backward = 1 - $value_to_add_backward;

                // compute backward furthest reaching paths
                for ( $k = $start_diag; $k <= $end_diag; $k += 2 ) {
                    if ( $k == $d
                        || ( $k != -$d && $V1[$limit_min_1 + $k] < $V1[$limit_plus_1 + $k] )
                    ) {
                        $x = $V1[$limit_min_1 + $k];
                    } else {
                        $x = $V1[$limit_plus_1 + $k] - 1;
                    }

                    $y = $x - $k - $delta;

                    $snake2 = 0;
                    while ( $x > 0 && $y > 0
                        && $from[$x + $bottoml1_min_1] === $to[$y + $bottoml2_min_1]
                    ) {
                        --$x;
                        --$y;
                        ++$snake2;
                    }
                    $V1[$limit + $k] = $x;

                    // check to see if we can cut down our diagonal range
                    if ( $x <= 0 ) {
                        $start_backward = $k + 1;
                        $value_to_add_backward = 0;
                    } elseif ( $y <= 0 && $end_backward > $k - 1 ) {
                        $end_backward = $k - 1;
                    }
                }
            }
        } else {
            for ( $d = 0; $d <= $limit; ++$d ) {
                $start_diag = max( $value_to_add_forward + $start_forward, -$d );
                $end_diag = min( $end_forward, $d );
                $value_to_add_forward = 1 - $value_to_add_forward;

                // compute forward furthest reaching paths
                for ( $k = $start_diag; $k <= $end_diag; $k += 2 ) {
                    if ( $k == -$d
                        || ( $k < $d && $V0[$limit_min_1 + $k] < $V0[$limit_plus_1 + $k] )
                    ) {
                        $x = $V0[$limit_plus_1 + $k];
                    } else {
                        $x = $V0[$limit_min_1 + $k] + 1;
                    }

                    $absx = $snake0 = $x + $bottoml1;
                    $absy = $snake1 = $x - $k + $bottoml2;

                    while ( $absx < $maxabsx && $absy < $maxabsy && $from[$absx] === $to[$absy] ) {
                        ++$absx;
                        ++$absy;
                    }
                    $x = $absx - $bottoml1;
                    $snake2 = $absx - $snake0;
                    $V0[$limit + $k] = $x;

                    // check to see if we can cut down the diagonal range
                    if ( $x >= $N && $end_forward > $k - 1 ) {
                        $end_forward = $k - 1;
                    } elseif ( $absy - $bottoml2 >= $M ) {
                        $start_forward = $k + 1;
                        $value_to_add_forward = 0;
                    }
                }

                $start_diag = max( $value_to_add_backward + $start_backward, -$d );
                $end_diag = min( $end_backward, $d );
                $value_to_add_backward = 1 - $value_to_add_backward;

                // compute backward furthest reaching paths
                for ( $k = $start_diag; $k <= $end_diag; $k += 2 ) {
                    if ( $k == $d
                        || ( $k != -$d && $V1[$limit_min_1 + $k] < $V1[$limit_plus_1 + $k] )
                    ) {
                        $x = $V1[$limit_min_1 + $k];
                    } else {
                        $x = $V1[$limit_plus_1 + $k] - 1;
                    }

                    $y = $x - $k - $delta;

                    $snake2 = 0;
                    while ( $x > 0 && $y > 0
                        && $from[$x + $bottoml1_min_1] === $to[$y + $bottoml2_min_1]
                    ) {
                        --$x;
                        --$y;
                        ++$snake2;
                    }
                    $V1[$limit + $k] = $x;

                    if ( $k >= -$delta - $d && $k <= $d - $delta
                        && $x <= $V0[$limit + $k + $delta]
                    ) {
                        $snake0 = $bottoml1 + $x;
                        $snake1 = $bottoml2 + $y;

                        return 2 * $d;
                    }

                    // check to see if we can cut down our diagonal range
                    if ( $x <= 0 ) {
                        $start_backward = $k + 1;
                        $value_to_add_backward = 0;
                    } elseif ( $y <= 0 && $end_backward > $k - 1 ) {
                        $end_backward = $k - 1;
                    }
                }
            }
        }
        /*
         * computing the true LCS is too expensive, instead find the diagonal
         * with the most progress and pretend a middle snake of length 0 occurs
         * there.
         */

        $most_progress = self::findMostProgress( $M, $N, $limit, $V );

        $snake0 = $bottoml1 + $most_progress[0];
        $snake1 = $bottoml2 + $most_progress[1];
        $snake2 = 0;
        // Computing the LCS is too expensive. Using a heuristic.
        $this->heuristicUsed = true;

        return 5; /*
        * HACK: since we didn't really finish the LCS computation
        * we don't really know the length of the SES. We don't do
        * anything with the result anyway, unless it's <=1. We know
        * for a fact SES > 1 so 5 is as good a number as any to
        * return here
        */
    }

    /**
     * @param int $M
     * @param int $N
     * @param int $limit
     * @param array $V
     * @return array
     */
    private static function findMostProgress( $M, $N, $limit, $V ) {
        $delta = $N - $M;

        if ( ( $M & 1 ) == ( $limit & 1 ) ) {
            $forward_start_diag = max( -$M, -$limit );
        } else {
            $forward_start_diag = max( 1 - $M, -$limit );
        }

        $forward_end_diag = min( $N, $limit );

        if ( ( $N & 1 ) == ( $limit & 1 ) ) {
            $backward_start_diag = max( -$N, -$limit );
        } else {
            $backward_start_diag = max( 1 - $N, -$limit );
        }

        $backward_end_diag = -min( $M, $limit );

        $temp = [ 0, 0, 0 ];

        $max_progress = array_fill( 0, ceil( max( $forward_end_diag - $forward_start_diag,
                $backward_end_diag - $backward_start_diag ) / 2 ), $temp );
        $num_progress = 0; // the 1st entry is current, it is initialized
        // with 0s

        // first search the forward diagonals
        for ( $k = $forward_start_diag; $k <= $forward_end_diag; $k += 2 ) {
            $x = $V[0][$limit + $k];
            $y = $x - $k;
            if ( $x > $N || $y > $M ) {
                continue;
            }

            $progress = $x + $y;
            if ( $progress > $max_progress[0][2] ) {
                $num_progress = 0;
                $max_progress[0][0] = $x;
                $max_progress[0][1] = $y;
                $max_progress[0][2] = $progress;
            } elseif ( $progress == $max_progress[0][2] ) {
                ++$num_progress;
                $max_progress[$num_progress][0] = $x;
                $max_progress[$num_progress][1] = $y;
                $max_progress[$num_progress][2] = $progress;
            }
        }

        $max_progress_forward = true; // initially the maximum
        // progress is in the forward
        // direction

        // now search the backward diagonals
        for ( $k = $backward_start_diag; $k <= $backward_end_diag; $k += 2 ) {
            $x = $V[1][$limit + $k];
            $y = $x - $k - $delta;
            if ( $x < 0 || $y < 0 ) {
                continue;
            }

            $progress = $N - $x + $M - $y;
            if ( $progress > $max_progress[0][2] ) {
                $num_progress = 0;
                $max_progress_forward = false;
                $max_progress[0][0] = $x;
                $max_progress[0][1] = $y;
                $max_progress[0][2] = $progress;
            } elseif ( $progress == $max_progress[0][2] && !$max_progress_forward ) {
                ++$num_progress;
                $max_progress[$num_progress][0] = $x;
                $max_progress[$num_progress][1] = $y;
                $max_progress[$num_progress][2] = $progress;
            }
        }

        // return the middle diagonal with maximal progress.
        return $max_progress[(int)floor( $num_progress / 2 )];
    }

    /**
     * @return int
     */
    public function getLcsLength() {
        if ( $this->heuristicUsed && !$this->lcsLengthCorrectedForHeuristic ) {
            $this->lcsLengthCorrectedForHeuristic = true;
            $this->length = $this->m - array_sum( $this->added );
        }

        return $this->length;
    }

}

/** @deprecated class alias since 1.41 */
class_alias( DiffEngine::class, 'DiffEngine' );