Function resolveCallableDependencies
has a Cognitive Complexity of 51 (exceeds 5 allowed). Consider refactoring. Open
public function resolveCallableDependencies(callable $callback, $params = [])
{
if (is_array($callback)) {
$reflection = new \ReflectionMethod($callback[0], $callback[1]);
} elseif (is_object($callback) && !$callback instanceof \Closure) {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function getDependencies
has a Cognitive Complexity of 45 (exceeds 5 allowed). Consider refactoring. Open
protected function getDependencies($class)
{
if (isset($this->_reflections[$class])) {
return [$this->_reflections[$class], $this->_dependencies[$class]];
}
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
The class Container has an overall complexity of 123 which is very high. The configured complexity threshold is 50. Open
class Container extends Component
{
/**
* @var array singleton objects indexed by their types
*/
- Exclude checks
Function normalizeDefinition
has a Cognitive Complexity of 15 (exceeds 5 allowed). Consider refactoring. Open
protected function normalizeDefinition($class, $definition)
{
if (empty($definition)) {
return ['class' => $class];
} elseif (is_string($definition)) {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function validateDependencies
has a Cognitive Complexity of 14 (exceeds 5 allowed). Consider refactoring. Open
private function validateDependencies($parameters)
{
$hasStringParameter = false;
$hasIntParameter = false;
foreach ($parameters as $index => $parameter) {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function get
has a Cognitive Complexity of 11 (exceeds 5 allowed). Consider refactoring. Open
public function get($class, $params = [], $config = [])
{
if ($class instanceof Instance) {
$class = $class->id;
}
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Consider simplifying this complex logical expression. Open
if ($associative && isset($params[$name]) && $params[$name] instanceof $className) {
$args[] = $params[$name];
unset($params[$name]);
} elseif (!$associative && isset($params[0]) && $params[0] instanceof $className) {
$args[] = array_shift($params);
Function build
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
protected function build($class, $params, $config)
{
/* @var $reflection ReflectionClass */
list($reflection, $dependencies) = $this->getDependencies($class);
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function resolveDependencies
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
protected function resolveDependencies($dependencies, $reflection = null)
{
foreach ($dependencies as $index => $dependency) {
if ($dependency instanceof Instance) {
if ($dependency->id !== null) {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Avoid too many return
statements within this method. Open
return $definition;
The method getDependencies() has an NPath complexity of 728. The configured NPath complexity threshold is 200. Open
protected function getDependencies($class)
{
if (isset($this->_reflections[$class])) {
return [$this->_reflections[$class], $this->_dependencies[$class]];
}
- Read upRead up
- Exclude checks
NPathComplexity
Since: 0.1
The NPath complexity of a method is the number of acyclic execution paths through that method. A threshold of 200 is generally considered the point where measures should be taken to reduce complexity.
Example
class Foo {
function bar() {
// lots of complicated code
}
}
Source https://phpmd.org/rules/codesize.html#npathcomplexity
The method build() has an NPath complexity of 288. The configured NPath complexity threshold is 200. Open
protected function build($class, $params, $config)
{
/* @var $reflection ReflectionClass */
list($reflection, $dependencies) = $this->getDependencies($class);
- Read upRead up
- Exclude checks
NPathComplexity
Since: 0.1
The NPath complexity of a method is the number of acyclic execution paths through that method. A threshold of 200 is generally considered the point where measures should be taken to reduce complexity.
Example
class Foo {
function bar() {
// lots of complicated code
}
}
Source https://phpmd.org/rules/codesize.html#npathcomplexity
The method resolveCallableDependencies() has an NPath complexity of 2416. The configured NPath complexity threshold is 200. Open
public function resolveCallableDependencies(callable $callback, $params = [])
{
if (is_array($callback)) {
$reflection = new \ReflectionMethod($callback[0], $callback[1]);
} elseif (is_object($callback) && !$callback instanceof \Closure) {
- Read upRead up
- Exclude checks
NPathComplexity
Since: 0.1
The NPath complexity of a method is the number of acyclic execution paths through that method. A threshold of 200 is generally considered the point where measures should be taken to reduce complexity.
Example
class Foo {
function bar() {
// lots of complicated code
}
}
Source https://phpmd.org/rules/codesize.html#npathcomplexity
The method normalizeDefinition() has a Cyclomatic Complexity of 11. The configured cyclomatic complexity threshold is 10. Open
protected function normalizeDefinition($class, $definition)
{
if (empty($definition)) {
return ['class' => $class];
} elseif (is_string($definition)) {
- Read upRead up
- Exclude checks
CyclomaticComplexity
Since: 0.1
Complexity is determined by the number of decision points in a method plus one for the method entry. The decision points are 'if', 'while', 'for', and 'case labels'. Generally, 1-4 is low complexity, 5-7 indicates moderate complexity, 8-10 is high complexity, and 11+ is very high complexity.
Example
// Cyclomatic Complexity = 11
class Foo {
1 public function example() {
2 if ($a == $b) {
3 if ($a1 == $b1) {
fiddle();
4 } elseif ($a2 == $b2) {
fiddle();
} else {
fiddle();
}
5 } elseif ($c == $d) {
6 while ($c == $d) {
fiddle();
}
7 } elseif ($e == $f) {
8 for ($n = 0; $n < $h; $n++) {
fiddle();
}
} else {
switch ($z) {
9 case 1:
fiddle();
break;
10 case 2:
fiddle();
break;
11 case 3:
fiddle();
break;
default:
fiddle();
break;
}
}
}
}
Source https://phpmd.org/rules/codesize.html#cyclomaticcomplexity
The method resolveCallableDependencies() has a Cyclomatic Complexity of 33. The configured cyclomatic complexity threshold is 10. Open
public function resolveCallableDependencies(callable $callback, $params = [])
{
if (is_array($callback)) {
$reflection = new \ReflectionMethod($callback[0], $callback[1]);
} elseif (is_object($callback) && !$callback instanceof \Closure) {
- Read upRead up
- Exclude checks
CyclomaticComplexity
Since: 0.1
Complexity is determined by the number of decision points in a method plus one for the method entry. The decision points are 'if', 'while', 'for', and 'case labels'. Generally, 1-4 is low complexity, 5-7 indicates moderate complexity, 8-10 is high complexity, and 11+ is very high complexity.
Example
// Cyclomatic Complexity = 11
class Foo {
1 public function example() {
2 if ($a == $b) {
3 if ($a1 == $b1) {
fiddle();
4 } elseif ($a2 == $b2) {
fiddle();
} else {
fiddle();
}
5 } elseif ($c == $d) {
6 while ($c == $d) {
fiddle();
}
7 } elseif ($e == $f) {
8 for ($n = 0; $n < $h; $n++) {
fiddle();
}
} else {
switch ($z) {
9 case 1:
fiddle();
break;
10 case 2:
fiddle();
break;
11 case 3:
fiddle();
break;
default:
fiddle();
break;
}
}
}
}
Source https://phpmd.org/rules/codesize.html#cyclomaticcomplexity
The method build() has a Cyclomatic Complexity of 10. The configured cyclomatic complexity threshold is 10. Open
protected function build($class, $params, $config)
{
/* @var $reflection ReflectionClass */
list($reflection, $dependencies) = $this->getDependencies($class);
- Read upRead up
- Exclude checks
CyclomaticComplexity
Since: 0.1
Complexity is determined by the number of decision points in a method plus one for the method entry. The decision points are 'if', 'while', 'for', and 'case labels'. Generally, 1-4 is low complexity, 5-7 indicates moderate complexity, 8-10 is high complexity, and 11+ is very high complexity.
Example
// Cyclomatic Complexity = 11
class Foo {
1 public function example() {
2 if ($a == $b) {
3 if ($a1 == $b1) {
fiddle();
4 } elseif ($a2 == $b2) {
fiddle();
} else {
fiddle();
}
5 } elseif ($c == $d) {
6 while ($c == $d) {
fiddle();
}
7 } elseif ($e == $f) {
8 for ($n = 0; $n < $h; $n++) {
fiddle();
}
} else {
switch ($z) {
9 case 1:
fiddle();
break;
10 case 2:
fiddle();
break;
11 case 3:
fiddle();
break;
default:
fiddle();
break;
}
}
}
}
Source https://phpmd.org/rules/codesize.html#cyclomaticcomplexity
The method getDependencies() has a Cyclomatic Complexity of 17. The configured cyclomatic complexity threshold is 10. Open
protected function getDependencies($class)
{
if (isset($this->_reflections[$class])) {
return [$this->_reflections[$class], $this->_dependencies[$class]];
}
- Read upRead up
- Exclude checks
CyclomaticComplexity
Since: 0.1
Complexity is determined by the number of decision points in a method plus one for the method entry. The decision points are 'if', 'while', 'for', and 'case labels'. Generally, 1-4 is low complexity, 5-7 indicates moderate complexity, 8-10 is high complexity, and 11+ is very high complexity.
Example
// Cyclomatic Complexity = 11
class Foo {
1 public function example() {
2 if ($a == $b) {
3 if ($a1 == $b1) {
fiddle();
4 } elseif ($a2 == $b2) {
fiddle();
} else {
fiddle();
}
5 } elseif ($c == $d) {
6 while ($c == $d) {
fiddle();
}
7 } elseif ($e == $f) {
8 for ($n = 0; $n < $h; $n++) {
fiddle();
}
} else {
switch ($z) {
9 case 1:
fiddle();
break;
10 case 2:
fiddle();
break;
11 case 3:
fiddle();
break;
default:
fiddle();
break;
}
}
}
}
Source https://phpmd.org/rules/codesize.html#cyclomaticcomplexity
The class Container has a coupling between objects value of 14. Consider to reduce the number of dependencies under 13. Open
class Container extends Component
{
/**
* @var array singleton objects indexed by their types
*/
- Read upRead up
- Exclude checks
CouplingBetweenObjects
Since: 1.1.0
A class with too many dependencies has negative impacts on several quality aspects of a class. This includes quality criteria like stability, maintainability and understandability
Example
class Foo {
/**
* @var \foo\bar\X
*/
private $x = null;
/**
* @var \foo\bar\Y
*/
private $y = null;
/**
* @var \foo\bar\Z
*/
private $z = null;
public function setFoo(\Foo $foo) {}
public function setBar(\Bar $bar) {}
public function setBaz(\Baz $baz) {}
/**
* @return \SplObjectStorage
* @throws \OutOfRangeException
* @throws \InvalidArgumentException
* @throws \ErrorException
*/
public function process(\Iterator $it) {}
// ...
}
Source https://phpmd.org/rules/design.html#couplingbetweenobjects
Missing class import via use statement (line '652', column '31'). Open
$reflection = new \ReflectionMethod($callback[0], $callback[1]);
- Read upRead up
- Exclude checks
MissingImport
Since: 2.7.0
Importing all external classes in a file through use statements makes them clearly visible.
Example
function make() {
return new \stdClass();
}
Source http://phpmd.org/rules/cleancode.html#MissingImport
Missing class import via use statement (line '656', column '31'). Open
$reflection = new \ReflectionFunction($callback);
- Read upRead up
- Exclude checks
MissingImport
Since: 2.7.0
Importing all external classes in a file through use statements makes them clearly visible.
Example
function make() {
return new \stdClass();
}
Source http://phpmd.org/rules/cleancode.html#MissingImport
Missing class import via use statement (line '654', column '31'). Open
$reflection = new \ReflectionMethod($callback, '__invoke');
- Read upRead up
- Exclude checks
MissingImport
Since: 2.7.0
Importing all external classes in a file through use statements makes them clearly visible.
Example
function make() {
return new \stdClass();
}
Source http://phpmd.org/rules/cleancode.html#MissingImport
The method hasSingleton has a boolean flag argument $checkInstance, which is a certain sign of a Single Responsibility Principle violation. Open
public function hasSingleton($class, $checkInstance = false)
- Read upRead up
- Exclude checks
BooleanArgumentFlag
Since: 1.4.0
A boolean flag argument is a reliable indicator for a violation of the Single Responsibility Principle (SRP). You can fix this problem by extracting the logic in the boolean flag into its own class or method.
Example
class Foo {
public function bar($flag = true) {
}
}
Source https://phpmd.org/rules/cleancode.html#booleanargumentflag
Avoid assigning values to variables in if clauses and the like (line '698', column '73'). Open
public function resolveCallableDependencies(callable $callback, $params = [])
{
if (is_array($callback)) {
$reflection = new \ReflectionMethod($callback[0], $callback[1]);
} elseif (is_object($callback) && !$callback instanceof \Closure) {
- Read upRead up
- Exclude checks
IfStatementAssignment
Since: 2.7.0
Assignments in if clauses and the like are considered a code smell. Assignments in PHP return the right operand as their result. In many cases, this is an expected behavior, but can lead to many difficult to spot bugs, especially when the right operand could result in zero, null or an empty string and the like.
Example
class Foo
{
public function bar($flag)
{
if ($foo = 'bar') { // possible typo
// ...
}
if ($baz = 0) { // always false
// ...
}
}
}
Source http://phpmd.org/rules/cleancode.html#ifstatementassignment
Avoid unused local variables such as '$parameter'. Open
foreach ($parameters as $index => $parameter) {
- Read upRead up
- Exclude checks
UnusedLocalVariable
Since: 0.2
Detects when a local variable is declared and/or assigned, but not used.
Example
class Foo {
public function doSomething()
{
$i = 5; // Unused
}
}