yzhao062/Pyod

View on GitHub
README.rst

Summary

Maintainability
Test Coverage
Python Outlier Detection (PyOD)
===============================

**Deployment & Documentation & Stats & License**

.. image:: https://img.shields.io/pypi/v/pyod.svg?color=brightgreen
   :target: https://pypi.org/project/pyod/
   :alt: PyPI version


.. image:: https://anaconda.org/conda-forge/pyod/badges/version.svg
   :target: https://anaconda.org/conda-forge/pyod
   :alt: Anaconda version


.. image:: https://readthedocs.org/projects/pyod/badge/?version=latest
   :target: https://pyod.readthedocs.io/en/latest/?badge=latest
   :alt: Documentation status


.. image:: https://img.shields.io/github/stars/yzhao062/pyod.svg
   :target: https://github.com/yzhao062/pyod/stargazers
   :alt: GitHub stars


.. image:: https://img.shields.io/github/forks/yzhao062/pyod.svg?color=blue
   :target: https://github.com/yzhao062/pyod/network
   :alt: GitHub forks


.. image:: https://pepy.tech/badge/pyod
   :target: https://pepy.tech/project/pyod
   :alt: Downloads

.. image:: https://github.com/yzhao062/pyod/actions/workflows/testing.yml/badge.svg
   :target: https://github.com/yzhao062/pyod/actions/workflows/testing.yml
   :alt: testing


.. image:: https://coveralls.io/repos/github/yzhao062/pyod/badge.svg
   :target: https://coveralls.io/github/yzhao062/pyod
   :alt: Coverage Status


.. image:: https://api.codeclimate.com/v1/badges/bdc3d8d0454274c753c4/maintainability
   :target: https://codeclimate.com/github/yzhao062/Pyod/maintainability
   :alt: Maintainability


.. image:: https://img.shields.io/github/license/yzhao062/pyod.svg
   :target: https://github.com/yzhao062/pyod/blob/master/LICENSE
   :alt: License

.. image:: https://img.shields.io/badge/ADBench-benchmark_results-pink
   :target: https://github.com/Minqi824/ADBench
   :alt: Benchmark


-----


Read Me First
^^^^^^^^^^^^^

Welcome to PyOD, a versatile Python library for detecting anomalies in multivariate data. Whether you're tackling a small-scale project or large datasets, PyOD offers a range of algorithms to suit your needs.

* **For time-series outlier detection**, please use `TODS <https://github.com/datamllab/tods>`_.

* **For graph outlier detection**, please use `PyGOD <https://pygod.org/>`_.

* **Performance Comparison \& Datasets**: We have a 45-page, the most comprehensive `anomaly detection benchmark paper <https://www.andrew.cmu.edu/user/yuezhao2/papers/22-neurips-adbench.pdf>`_. The fully `open-sourced ADBench <https://github.com/Minqi824/ADBench>`_ compares 30 anomaly detection algorithms on 57 benchmark datasets.

* **Learn more about anomaly detection** \@ `Anomaly Detection Resources <https://github.com/yzhao062/anomaly-detection-resources>`_

* **PyOD on Distributed Systems**: you could also run `PyOD on databricks <https://www.databricks.com/blog/2023/03/13/unsupervised-outlier-detection-databricks.html>`_.

----

About PyOD
^^^^^^^^^^

PyOD, established in 2017, has become a go-to **Python library** for **detecting anomalous/outlying objects** in
multivariate data. This exciting yet challenging field is commonly referred as 
`Outlier Detection <https://en.wikipedia.org/wiki/Anomaly_detection>`_
or `Anomaly Detection <https://en.wikipedia.org/wiki/Anomaly_detection>`_.

PyOD includes more than 50 detection algorithms, from classical LOF (SIGMOD 2000) to
the cutting-edge ECOD and DIF (TKDE 2022 and 2023). Since 2017, PyOD has been successfully used in numerous academic researches and
commercial products with more than `17 million downloads <https://pepy.tech/project/pyod>`_.
It is also well acknowledged by the machine learning community with various dedicated posts/tutorials, including
`Analytics Vidhya <https://www.analyticsvidhya.com/blog/2019/02/outlier-detection-python-pyod/>`_,
`KDnuggets <https://www.kdnuggets.com/2019/02/outlier-detection-methods-cheat-sheet.html>`_, and
`Towards Data Science <https://towardsdatascience.com/anomaly-detection-for-dummies-15f148e559c1>`_.


**PyOD is featured for**:

* **Unified, User-Friendly Interface** across various algorithms.
* **Wide Range of Models**\, from classic techniques to the latest deep learning methods.
* **High Performance & Efficiency**, leveraging `numba <https://github.com/numba/numba>`_ and `joblib <https://github.com/joblib/joblib>`_ for JIT compilation and parallel processing.
* **Fast Training & Prediction**, achieved through the SUOD framework [#Zhao2021SUOD]_.


**Outlier Detection with 5 Lines of Code**\ :


.. code-block:: python


    # Example: Training an ECOD detector
    from pyod.models.ecod import ECOD
    clf = ECOD()
    clf.fit(X_train)
    y_train_scores = clf.decision_scores_  # Outlier scores for training data
    y_test_scores = clf.decision_function(X_test)  # Outlier scores for test data

**Selecting the Right Algorithm:**. Unsure where to start? Consider these robust and interpretable options:

- `ECOD <https://github.com/yzhao062/pyod/blob/master/examples/ecod_example.py>`_: Example of using ECOD for outlier detection
- `Isolation Forest <https://github.com/yzhao062/pyod/blob/master/examples/iforest_example.py>`_: Example of using Isolation Forest for outlier detection

Alternatively, explore `MetaOD <https://github.com/yzhao062/MetaOD>`_ for a data-driven approach.

**Citing PyOD**\ :

`PyOD paper <http://www.jmlr.org/papers/volume20/19-011/19-011.pdf>`_ is published in
`Journal of Machine Learning Research (JMLR) <http://www.jmlr.org/>`_ (MLOSS track).
If you use PyOD in a scientific publication, we would appreciate
citations to the following paper::

    @article{zhao2019pyod,
        author  = {Zhao, Yue and Nasrullah, Zain and Li, Zheng},
        title   = {PyOD: A Python Toolbox for Scalable Outlier Detection},
        journal = {Journal of Machine Learning Research},
        year    = {2019},
        volume  = {20},
        number  = {96},
        pages   = {1-7},
        url     = {http://jmlr.org/papers/v20/19-011.html}
    }

or::

    Zhao, Y., Nasrullah, Z. and Li, Z., 2019. PyOD: A Python Toolbox for Scalable Outlier Detection. Journal of machine learning research (JMLR), 20(96), pp.1-7.

For a broader perspective on anomaly detection, see our NeurIPS papers
`ADBench: Anomaly Detection Benchmark Paper <https://viterbi-web.usc.edu/~yzhao010/papers/22-neurips-adbench.pdf>`_ \& `ADGym: Design Choices for Deep Anomaly Detection <https://viterbi-web.usc.edu/~yzhao010/papers/23-neurips-adgym.pdf>`_::

    @article{han2022adbench,
        title={Adbench: Anomaly detection benchmark},
        author={Han, Songqiao and Hu, Xiyang and Huang, Hailiang and Jiang, Minqi and Zhao, Yue},
        journal={Advances in Neural Information Processing Systems},
        volume={35},
        pages={32142--32159},
        year={2022}
    }

    @article{jiang2023adgym,
        title={ADGym: Design Choices for Deep Anomaly Detection},
        author={Jiang, Minqi and Hou, Chaochuan and Zheng, Ao and Han, Songqiao and Huang, Hailiang and Wen, Qingsong and Hu, Xiyang and Zhao, Yue},
        journal={Advances in Neural Information Processing Systems},
        volume={36},
        year={2023}
    }



**Table of Contents**\ :


* `Installation <#installation>`_
* `API Cheatsheet & Reference <#api-cheatsheet--reference>`_
* `ADBench Benchmark and Datasets <#adbench-benchmark-and-datasets>`_
* `Model Save & Load <#model-save--load>`_
* `Fast Train with SUOD <#fast-train-with-suod>`_
* `Thresholding Outlier Scores <#thresholding-outlier-scores>`_
* `Implemented Algorithms <#implemented-algorithms>`_
* `Quick Start for Outlier Detection <#quick-start-for-outlier-detection>`_
* `How to Contribute <#how-to-contribute>`_
* `Inclusion Criteria <#inclusion-criteria>`_


----


Installation
^^^^^^^^^^^^

PyOD is designed for easy installation using either **pip** or **conda**.
We recommend using the latest version of PyOD due to frequent updates and enhancements:

.. code-block:: bash

   pip install pyod            # normal install
   pip install --upgrade pyod  # or update if needed

.. code-block:: bash

   conda install -c conda-forge pyod

Alternatively, you could clone and run setup.py file:

.. code-block:: bash

   git clone https://github.com/yzhao062/pyod.git
   cd pyod
   pip install .


**Required Dependencies**\ :


* Python 3.8 or higher
* joblib
* matplotlib
* numpy>=1.19
* numba>=0.51
* scipy>=1.5.1
* scikit_learn>=0.22.0


**Optional Dependencies (see details below)**\ :

* combo (optional, required for models/combination.py and FeatureBagging)
* keras/tensorflow (optional, required for AutoEncoder, and other deep learning models)
* suod (optional, required for running SUOD model)
* xgboost (optional, required for XGBOD)
* pythresh (optional, required for thresholding)optional

----


API Cheatsheet & Reference
^^^^^^^^^^^^^^^^^^^^^^^^^^

The full API Reference is available at `PyOD Documentation <https://pyod.readthedocs.io/en/latest/pyod.html>`_. Below is a quick cheatsheet for all detectors:

* **fit(X)**\ : Fit the detector. The parameter y is ignored in unsupervised methods.
* **decision_function(X)**\ : Predict raw anomaly scores for X using the fitted detector.
* **predict(X)**\ : Determine whether a sample is an outlier or not as binary labels using the fitted detector.
* **predict_proba(X)**\ : Estimate the probability of a sample being an outlier using the fitted detector.
* **predict_confidence(X)**\ : Assess the model's confidence on a per-sample basis (applicable in predict and predict_proba) [#Perini2020Quantifying]_.


**Key Attributes of a fitted model**:


* **decision_scores_**\ : Outlier scores of the training data. Higher scores typically indicate more abnormal behavior. Outliers usually have higher scores.
* **labels_**\ : Binary labels of the training data, where 0 indicates inliers and 1 indicates outliers/anomalies.


----


ADBench Benchmark and Datasets
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

We just released a 45-page, the most comprehensive `ADBench: Anomaly Detection Benchmark <https://arxiv.org/abs/2206.09426>`_ [#Han2022ADBench]_.
The fully `open-sourced ADBench <https://github.com/Minqi824/ADBench>`_ compares 30 anomaly detection algorithms on 57 benchmark datasets.

The organization of **ADBench** is provided below:

.. image:: https://github.com/Minqi824/ADBench/blob/main/figs/ADBench.png?raw=true
   :target: https://github.com/Minqi824/ADBench/blob/main/figs/ADBench.png?raw=true
   :alt: benchmark-fig


For a simpler visualization, we make **the comparison of selected models** via
`compare_all_models.py <https://github.com/yzhao062/pyod/blob/master/examples/compare_all_models.py>`_\.

.. image:: https://github.com/yzhao062/pyod/blob/development/examples/ALL.png?raw=true
   :target: https://github.com/yzhao062/pyod/blob/development/examples/ALL.png?raw=true
   :alt: Comparison_of_All



----

Model Save & Load
^^^^^^^^^^^^^^^^^

PyOD takes a similar approach of sklearn regarding model persistence.
See `model persistence <https://scikit-learn.org/stable/modules/model_persistence.html>`_ for clarification.

In short, we recommend to use joblib or pickle for saving and loading PyOD models.
See `"examples/save_load_model_example.py" <https://github.com/yzhao062/pyod/blob/master/examples/save_load_model_example.py>`_ for an example.
In short, it is simple as below:

.. code-block:: python

    from joblib import dump, load

    # save the model
    dump(clf, 'clf.joblib')
    # load the model
    clf = load('clf.joblib')

It is known that there are challenges in saving neural network models.
Check `#328 <https://github.com/yzhao062/pyod/issues/328#issuecomment-917192704>`_
and `#88 <https://github.com/yzhao062/pyod/issues/88#issuecomment-615343139>`_
for temporary workaround.


----


Fast Train with SUOD
^^^^^^^^^^^^^^^^^^^^

**Fast training and prediction**: it is possible to train and predict with
a large number of detection models in PyOD by leveraging SUOD framework [#Zhao2021SUOD]_.
See  `SUOD Paper <https://www.andrew.cmu.edu/user/yuezhao2/papers/21-mlsys-suod.pdf>`_
and  `SUOD example <https://github.com/yzhao062/pyod/blob/master/examples/suod_example.py>`_.


.. code-block:: python

    from pyod.models.suod import SUOD

    # initialized a group of outlier detectors for acceleration
    detector_list = [LOF(n_neighbors=15), LOF(n_neighbors=20),
                     LOF(n_neighbors=25), LOF(n_neighbors=35),
                     COPOD(), IForest(n_estimators=100),
                     IForest(n_estimators=200)]

    # decide the number of parallel process, and the combination method
    # then clf can be used as any outlier detection model
    clf = SUOD(base_estimators=detector_list, n_jobs=2, combination='average',
               verbose=False)

----

Thresholding Outlier Scores
^^^^^^^^^^^^^^^^^^^^^^^^^^^

A more data based approach can be taken when setting the contamination level.
By using a thresholding method, guessing an abritrary value can be replaced
with tested techniques for seperating inliers and outliers. Refer to 
`PyThresh <https://github.com/KulikDM/pythresh>`_ for
a more in depth look at thresholding.


.. code-block:: python

    from pyod.models.knn import KNN
    from pyod.models.thresholds import FILTER

    # Set the outlier detection and thresholding methods
    clf = KNN(contamination=FILTER())


----



Implemented Algorithms
^^^^^^^^^^^^^^^^^^^^^^

PyOD toolkit consists of four major functional groups:

**(i) Individual Detection Algorithms** :

===================  ==================  ======================================================================================================  =====  ========================================
Type                 Abbr                Algorithm                                                                                               Year   Ref
===================  ==================  ======================================================================================================  =====  ========================================
Probabilistic        ECOD                Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions                        2022   [#Li2021ECOD]_
Probabilistic        ABOD                Angle-Based Outlier Detection                                                                           2008   [#Kriegel2008Angle]_
Probabilistic        FastABOD            Fast Angle-Based Outlier Detection using approximation                                                  2008   [#Kriegel2008Angle]_
Probabilistic        COPOD               COPOD: Copula-Based Outlier Detection                                                                   2020   [#Li2020COPOD]_
Probabilistic        MAD                 Median Absolute Deviation (MAD)                                                                         1993   [#Iglewicz1993How]_
Probabilistic        SOS                 Stochastic Outlier Selection                                                                            2012   [#Janssens2012Stochastic]_
Probabilistic        QMCD                Quasi-Monte Carlo Discrepancy outlier detection                                                         2001   [#Fang2001Wrap]_
Probabilistic        KDE                 Outlier Detection with Kernel Density Functions                                                         2007   [#Latecki2007Outlier]_
Probabilistic        Sampling            Rapid distance-based outlier detection via sampling                                                     2013   [#Sugiyama2013Rapid]_
Probabilistic        GMM                 Probabilistic Mixture Modeling for Outlier Analysis                                                            [#Aggarwal2015Outlier]_ [Ch.2]
Linear Model         PCA                 Principal Component Analysis (the sum of weighted projected distances to the eigenvector hyperplanes)   2003   [#Shyu2003A]_
Linear Model         KPCA                Kernel Principal Component Analysis                                                                     2007   [#Hoffmann2007Kernel]_
Linear Model         MCD                 Minimum Covariance Determinant (use the mahalanobis distances as the outlier scores)                    1999   [#Hardin2004Outlier]_ [#Rousseeuw1999A]_
Linear Model         CD                  Use Cook's distance for outlier detection                                                               1977   [#Cook1977Detection]_
Linear Model         OCSVM               One-Class Support Vector Machines                                                                       2001   [#Scholkopf2001Estimating]_
Linear Model         LMDD                Deviation-based Outlier Detection (LMDD)                                                                1996   [#Arning1996A]_
Proximity-Based      LOF                 Local Outlier Factor                                                                                    2000   [#Breunig2000LOF]_
Proximity-Based      COF                 Connectivity-Based Outlier Factor                                                                       2002   [#Tang2002Enhancing]_
Proximity-Based      (Incremental) COF   Memory Efficient Connectivity-Based Outlier Factor (slower but reduce storage complexity)               2002   [#Tang2002Enhancing]_
Proximity-Based      CBLOF               Clustering-Based Local Outlier Factor                                                                   2003   [#He2003Discovering]_
Proximity-Based      LOCI                LOCI: Fast outlier detection using the local correlation integral                                       2003   [#Papadimitriou2003LOCI]_
Proximity-Based      HBOS                Histogram-based Outlier Score                                                                           2012   [#Goldstein2012Histogram]_
Proximity-Based      kNN                 k Nearest Neighbors (use the distance to the kth nearest neighbor as the outlier score)                 2000   [#Ramaswamy2000Efficient]_
Proximity-Based      AvgKNN              Average kNN (use the average distance to k nearest neighbors as the outlier score)                      2002   [#Angiulli2002Fast]_
Proximity-Based      MedKNN              Median kNN (use the median distance to k nearest neighbors as the outlier score)                        2002   [#Angiulli2002Fast]_
Proximity-Based      SOD                 Subspace Outlier Detection                                                                              2009   [#Kriegel2009Outlier]_
Proximity-Based      ROD                 Rotation-based Outlier Detection                                                                        2020   [#Almardeny2020A]_
Outlier Ensembles    IForest             Isolation Forest                                                                                        2008   [#Liu2008Isolation]_
Outlier Ensembles    INNE                Isolation-based Anomaly Detection Using Nearest-Neighbor Ensembles                                      2018   [#Bandaragoda2018Isolation]_
Outlier Ensembles    DIF                 Deep Isolation Forest for Anomaly Detection                                                             2023   [#Xu2023Deep]_
Outlier Ensembles    FB                  Feature Bagging                                                                                         2005   [#Lazarevic2005Feature]_
Outlier Ensembles    LSCP                LSCP: Locally Selective Combination of Parallel Outlier Ensembles                                       2019   [#Zhao2019LSCP]_
Outlier Ensembles    XGBOD               Extreme Boosting Based Outlier Detection **(Supervised)**                                               2018   [#Zhao2018XGBOD]_
Outlier Ensembles    LODA                Lightweight On-line Detector of Anomalies                                                               2016   [#Pevny2016Loda]_
Outlier Ensembles    SUOD                SUOD: Accelerating Large-scale Unsupervised Heterogeneous Outlier Detection **(Acceleration)**          2021   [#Zhao2021SUOD]_
Neural Networks      AutoEncoder         Fully connected AutoEncoder (use reconstruction error as the outlier score)                                    [#Aggarwal2015Outlier]_ [Ch.3]
Neural Networks      VAE                 Variational AutoEncoder (use reconstruction error as the outlier score)                                 2013   [#Kingma2013Auto]_
Neural Networks      Beta-VAE            Variational AutoEncoder (all customized loss term by varying gamma and capacity)                        2018   [#Burgess2018Understanding]_
Neural Networks      SO_GAAL             Single-Objective Generative Adversarial Active Learning                                                 2019   [#Liu2019Generative]_
Neural Networks      MO_GAAL             Multiple-Objective Generative Adversarial Active Learning                                               2019   [#Liu2019Generative]_
Neural Networks      DeepSVDD            Deep One-Class Classification                                                                           2018   [#Ruff2018Deep]_
Neural Networks      AnoGAN              Anomaly Detection with Generative Adversarial Networks                                                  2017   [#Schlegl2017Unsupervised]_
Neural Networks      ALAD                Adversarially learned anomaly detection                                                                 2018   [#Zenati2018Adversarially]_
Graph-based          R-Graph             Outlier detection by R-graph                                                                            2017   [#You2017Provable]_
Graph-based          LUNAR               LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks                               2022   [#Goodge2022Lunar]_
===================  ==================  ======================================================================================================  =====  ========================================


**(ii) Outlier Ensembles & Outlier Detector Combination Frameworks**:

===================  ================  =====================================================================================================  =====  ========================================
Type                 Abbr              Algorithm                                                                                              Year   Ref
===================  ================  =====================================================================================================  =====  ========================================
Outlier Ensembles    FB                Feature Bagging                                                                                        2005   [#Lazarevic2005Feature]_
Outlier Ensembles    LSCP              LSCP: Locally Selective Combination of Parallel Outlier Ensembles                                      2019   [#Zhao2019LSCP]_
Outlier Ensembles    XGBOD             Extreme Boosting Based Outlier Detection **(Supervised)**                                              2018   [#Zhao2018XGBOD]_
Outlier Ensembles    LODA              Lightweight On-line Detector of Anomalies                                                              2016   [#Pevny2016Loda]_
Outlier Ensembles    SUOD              SUOD: Accelerating Large-scale Unsupervised Heterogeneous Outlier Detection **(Acceleration)**         2021   [#Zhao2021SUOD]_
Outlier Ensembles    INNE              Isolation-based Anomaly Detection Using Nearest-Neighbor Ensembles                                     2018   [#Bandaragoda2018Isolation]_
Combination          Average           Simple combination by averaging the scores                                                             2015   [#Aggarwal2015Theoretical]_
Combination          Weighted Average  Simple combination by averaging the scores with detector weights                                       2015   [#Aggarwal2015Theoretical]_
Combination          Maximization      Simple combination by taking the maximum scores                                                        2015   [#Aggarwal2015Theoretical]_
Combination          AOM               Average of Maximum                                                                                     2015   [#Aggarwal2015Theoretical]_
Combination          MOA               Maximization of Average                                                                                2015   [#Aggarwal2015Theoretical]_
Combination          Median            Simple combination by taking the median of the scores                                                  2015   [#Aggarwal2015Theoretical]_
Combination          majority Vote     Simple combination by taking the majority vote of the labels (weights can be used)                     2015   [#Aggarwal2015Theoretical]_
===================  ================  =====================================================================================================  =====  ========================================

**(iii) Outlier Detection Score Thresholding Methods**:

==================================  ================  ================================================================ ====================================================================================================================
Type                                Abbr              Algorithm                                                        Documentation                                    
==================================  ================  ================================================================ ====================================================================================================================
Kernel-Based                        AUCP              Area Under Curve Percentage                                      `AUCP <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.AUCP>`_
Statistical Moment-Based            BOOT              Bootstrapping                                                    `BOOT <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.BOOT>`_ 
Normality-Based                     CHAU              Chauvenet's Criterion                                            `CHAU <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.CHAU>`_
Linear Model                        CLF               Trained Linear Classifier                                        `CLF <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.CLF>`_
cluster-Based                       CLUST             Clustering Based                                                 `CLUST <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.CLUST>`_
Kernel-Based                        CPD               Change Point Detection                                           `CPD <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.CPD>`_
Transformation-Based                DECOMP            Decomposition                                                    `DECOMP <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.DECOMP>`_
Normality-Based                     DSN               Distance Shift from Normal                                       `DSN <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.DSN>`_
Curve-Based                         EB                Elliptical Boundary                                              `EB <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.EB>`_
Kernel-Based                        FGD               Fixed Gradient Descent                                           `FGD <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.FGD>`_
Filter-Based                        FILTER            Filtering Based                                                  `FILTER <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.FILTER>`_
Curve-Based                         FWFM              Full Width at Full Minimum                                       `FWFM <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.FWFM>`_
Statistical Test-Based              GESD              Generalized Extreme Studentized Deviate                          `GESD <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.GESD>`_
Filter-Based                        HIST              Histogram Based                                                  `HIST <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.HIST>`_
Quantile-Based                      IQR               Inter-Quartile Region                                            `IQR <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.IQR>`_
Statistical Moment-Based            KARCH             Karcher mean (Riemannian Center of Mass)                         `KARCH <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.KARCH>`_
Statistical Moment-Based            MAD               Median Absolute Deviation                                        `MAD <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.MAD>`_
Statistical Test-Based              MCST              Monte Carlo Shapiro Tests                                        `MCST <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.MCST>`_
Ensembles-Based                     META              Meta-model Trained Classifier                                    `META <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.META>`_
Transformation-Based                MOLL              Friedrichs' Mollifier                                            `MOLL <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.MOLL>`_
Statistical Test-Based              MTT               Modified Thompson Tau Test                                       `MTT <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.MTT>`_
Linear Model                        OCSVM             One-Class Support Vector Machine                                 `OCSVM <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.OCSVM>`_
Quantile-Based                      QMCD              Quasi-Monte Carlo Discrepancy                                    `QMCD <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.QMCD>`_
Linear Model                        REGR              Regression Based                                                 `REGR <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.REGR>`_
Neural Networks                     VAE               Variational Autoencoder                                          `VAE <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.VAE>`_
Curve-Based                         WIND              Topological Winding Number                                       `WIND <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.WIND>`_
Transformation-Based                YJ                Yeo-Johnson Transformation                                       `YJ <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.YJ>`_
Normality-Based                     ZSCORE            Z-score                                                          `ZSCORE <https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.thresholds.ZSCORE>`_
==================================  ================  ================================================================ ====================================================================================================================


**(iV) Utility Functions**:

===================  ======================  =====================================================================================================================================================  ======================================================================================================================================
Type                 Name                    Function                                                                                                                                               Documentation
===================  ======================  =====================================================================================================================================================  ======================================================================================================================================
Data                 generate_data           Synthesized data generation; normal data is generated by a multivariate Gaussian and outliers are generated by a uniform distribution                  `generate_data <https://pyod.readthedocs.io/en/latest/pyod.utils.html#module-pyod.utils.data.generate_data>`_
Data                 generate_data_clusters  Synthesized data generation in clusters; more complex data patterns can be created with multiple clusters                                              `generate_data_clusters <https://pyod.readthedocs.io/en/latest/pyod.utils.html#pyod.utils.data.generate_data_clusters>`_
Stat                 wpearsonr               Calculate the weighted Pearson correlation of two samples                                                                                              `wpearsonr <https://pyod.readthedocs.io/en/latest/pyod.utils.html#module-pyod.utils.stat_models.wpearsonr>`_
Utility              get_label_n             Turn raw outlier scores into binary labels by assign 1 to top n outlier scores                                                                         `get_label_n <https://pyod.readthedocs.io/en/latest/pyod.utils.html#module-pyod.utils.utility.get_label_n>`_
Utility              precision_n_scores      calculate precision @ rank n                                                                                                                           `precision_n_scores <https://pyod.readthedocs.io/en/latest/pyod.utils.html#module-pyod.utils.utility.precision_n_scores>`_
===================  ======================  =====================================================================================================================================================  ======================================================================================================================================

----

Quick Start for Outlier Detection
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

PyOD has been well acknowledged by the machine learning community with a few featured posts and tutorials.

**Analytics Vidhya**: `An Awesome Tutorial to Learn Outlier Detection in Python using PyOD Library <https://www.analyticsvidhya.com/blog/2019/02/outlier-detection-python-pyod/>`_

**KDnuggets**: `Intuitive Visualization of Outlier Detection Methods <https://www.kdnuggets.com/2019/02/outlier-detection-methods-cheat-sheet.html>`_, `An Overview of Outlier Detection Methods from PyOD <https://www.kdnuggets.com/2019/06/overview-outlier-detection-methods-pyod.html>`_

**Towards Data Science**: `Anomaly Detection for Dummies <https://towardsdatascience.com/anomaly-detection-for-dummies-15f148e559c1>`_

**Computer Vision News (March 2019)**: `Python Open Source Toolbox for Outlier Detection <https://rsipvision.com/ComputerVisionNews-2019March/18/>`_

`"examples/knn_example.py" <https://github.com/yzhao062/pyod/blob/master/examples/knn_example.py>`_
demonstrates the basic API of using kNN detector. **It is noted that the API across all other algorithms are consistent/similar**.

More detailed instructions for running examples can be found in `examples directory <https://github.com/yzhao062/pyod/blob/master/examples>`_.


#. Initialize a kNN detector, fit the model, and make the prediction.

   .. code-block:: python


       from pyod.models.knn import KNN   # kNN detector

       # train kNN detector
       clf_name = 'KNN'
       clf = KNN()
       clf.fit(X_train)

       # get the prediction label and outlier scores of the training data
       y_train_pred = clf.labels_  # binary labels (0: inliers, 1: outliers)
       y_train_scores = clf.decision_scores_  # raw outlier scores

       # get the prediction on the test data
       y_test_pred = clf.predict(X_test)  # outlier labels (0 or 1)
       y_test_scores = clf.decision_function(X_test)  # outlier scores

       # it is possible to get the prediction confidence as well
       y_test_pred, y_test_pred_confidence = clf.predict(X_test, return_confidence=True)  # outlier labels (0 or 1) and confidence in the range of [0,1]

#. Evaluate the prediction by ROC and Precision @ Rank n (p@n).

   .. code-block:: python

       from pyod.utils.data import evaluate_print
       
       # evaluate and print the results
       print("\nOn Training Data:")
       evaluate_print(clf_name, y_train, y_train_scores)
       print("\nOn Test Data:")
       evaluate_print(clf_name, y_test, y_test_scores)


#. See a sample output & visualization.


   .. code-block:: python


       On Training Data:
       KNN ROC:1.0, precision @ rank n:1.0

       On Test Data:
       KNN ROC:0.9989, precision @ rank n:0.9

   .. code-block:: python


       visualize(clf_name, X_train, y_train, X_test, y_test, y_train_pred,
           y_test_pred, show_figure=True, save_figure=False)

Visualization (\ `knn_figure <https://raw.githubusercontent.com/yzhao062/pyod/master/examples/KNN.png>`_\ ):

.. image:: https://raw.githubusercontent.com/yzhao062/pyod/master/examples/KNN.png
   :target: https://raw.githubusercontent.com/yzhao062/pyod/master/examples/KNN.png
   :alt: kNN example figure

----

Reference
^^^^^^^^^


.. [#Aggarwal2015Outlier] Aggarwal, C.C., 2015. Outlier analysis. In Data mining (pp. 237-263). Springer, Cham.

.. [#Aggarwal2015Theoretical] Aggarwal, C.C. and Sathe, S., 2015. Theoretical foundations and algorithms for outlier ensembles.\ *ACM SIGKDD Explorations Newsletter*\ , 17(1), pp.24-47.

.. [#Aggarwal2017Outlier] Aggarwal, C.C. and Sathe, S., 2017. Outlier ensembles: An introduction. Springer.

.. [#Almardeny2020A] Almardeny, Y., Boujnah, N. and Cleary, F., 2020. A Novel Outlier Detection Method for Multivariate Data. *IEEE Transactions on Knowledge and Data Engineering*.

.. [#Angiulli2002Fast] Angiulli, F. and Pizzuti, C., 2002, August. Fast outlier detection in high dimensional spaces. In *European Conference on Principles of Data Mining and Knowledge Discovery* pp. 15-27.

.. [#Arning1996A] Arning, A., Agrawal, R. and Raghavan, P., 1996, August. A Linear Method for Deviation Detection in Large Databases. In *KDD* (Vol. 1141, No. 50, pp. 972-981).

.. [#Bandaragoda2018Isolation] Bandaragoda, T. R., Ting, K. M., Albrecht, D., Liu, F. T., Zhu, Y., and Wells, J. R., 2018, Isolation-based anomaly detection using nearest-neighbor ensembles. *Computational Intelligence*\ , 34(4), pp. 968-998.

.. [#Breunig2000LOF] Breunig, M.M., Kriegel, H.P., Ng, R.T. and Sander, J., 2000, May. LOF: identifying density-based local outliers. *ACM Sigmod Record*\ , 29(2), pp. 93-104.

.. [#Burgess2018Understanding] Burgess, Christopher P., et al. "Understanding disentangling in beta-VAE." arXiv preprint arXiv:1804.03599 (2018).

.. [#Cook1977Detection] Cook, R.D., 1977. Detection of influential observation in linear regression. Technometrics, 19(1), pp.15-18.

.. [#Fang2001Wrap] Fang, K.T. and Ma, C.X., 2001. Wrap-around L2-discrepancy of random sampling, Latin hypercube and uniform designs. Journal of complexity, 17(4), pp.608-624.

.. [#Goldstein2012Histogram] Goldstein, M. and Dengel, A., 2012. Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm. In *KI-2012: Poster and Demo Track*\ , pp.59-63.

.. [#Goodge2022Lunar] Goodge, A., Hooi, B., Ng, S.K. and Ng, W.S., 2022, June. Lunar: Unifying local outlier detection methods via graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence.

.. [#Gopalan2019PIDForest] Gopalan, P., Sharan, V. and Wieder, U., 2019. PIDForest: Anomaly Detection via Partial Identification. In Advances in Neural Information Processing Systems, pp. 15783-15793.

.. [#Han2022ADBench] Han, S., Hu, X., Huang, H., Jiang, M. and Zhao, Y., 2022. ADBench: Anomaly Detection Benchmark. arXiv preprint arXiv:2206.09426.

.. [#Hardin2004Outlier] Hardin, J. and Rocke, D.M., 2004. Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator. *Computational Statistics & Data Analysis*\ , 44(4), pp.625-638.

.. [#He2003Discovering] He, Z., Xu, X. and Deng, S., 2003. Discovering cluster-based local outliers. *Pattern Recognition Letters*\ , 24(9-10), pp.1641-1650.

.. [#Hoffmann2007Kernel] Hoffmann, H., 2007. Kernel PCA for novelty detection. Pattern recognition, 40(3), pp.863-874.

.. [#Iglewicz1993How] Iglewicz, B. and Hoaglin, D.C., 1993. How to detect and handle outliers (Vol. 16). Asq Press.

.. [#Janssens2012Stochastic] Janssens, J.H.M., Huszár, F., Postma, E.O. and van den Herik, H.J., 2012. Stochastic outlier selection. Technical report TiCC TR 2012-001, Tilburg University, Tilburg Center for Cognition and Communication, Tilburg, The Netherlands.

.. [#Kingma2013Auto] Kingma, D.P. and Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.

.. [#Kriegel2008Angle] Kriegel, H.P. and Zimek, A., 2008, August. Angle-based outlier detection in high-dimensional data. In *KDD '08*\ , pp. 444-452. ACM.

.. [#Kriegel2009Outlier] Kriegel, H.P., Kröger, P., Schubert, E. and Zimek, A., 2009, April. Outlier detection in axis-parallel subspaces of high dimensional data. In *Pacific-Asia Conference on Knowledge Discovery and Data Mining*\ , pp. 831-838. Springer, Berlin, Heidelberg.

.. [#Latecki2007Outlier] Latecki, L.J., Lazarevic, A. and Pokrajac, D., 2007, July. Outlier detection with kernel density functions. In International Workshop on Machine Learning and Data Mining in Pattern Recognition (pp. 61-75). Springer, Berlin, Heidelberg.

.. [#Lazarevic2005Feature] Lazarevic, A. and Kumar, V., 2005, August. Feature bagging for outlier detection. In *KDD '05*. 2005.

.. [#Li2019MADGAN] Li, D., Chen, D., Jin, B., Shi, L., Goh, J. and Ng, S.K., 2019, September. MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks. In *International Conference on Artificial Neural Networks* (pp. 703-716). Springer, Cham.

.. [#Li2020COPOD] Li, Z., Zhao, Y., Botta, N., Ionescu, C. and Hu, X. COPOD: Copula-Based Outlier Detection. *IEEE International Conference on Data Mining (ICDM)*, 2020.

.. [#Li2021ECOD] Li, Z., Zhao, Y., Hu, X., Botta, N., Ionescu, C. and Chen, H. G. ECOD: Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions. *IEEE Transactions on Knowledge and Data Engineering (TKDE)*, 2022.

.. [#Liu2008Isolation] Liu, F.T., Ting, K.M. and Zhou, Z.H., 2008, December. Isolation forest. In *International Conference on Data Mining*\ , pp. 413-422. IEEE.

.. [#Liu2019Generative] Liu, Y., Li, Z., Zhou, C., Jiang, Y., Sun, J., Wang, M. and He, X., 2019. Generative adversarial active learning for unsupervised outlier detection. *IEEE Transactions on Knowledge and Data Engineering*.

.. [#Papadimitriou2003LOCI] Papadimitriou, S., Kitagawa, H., Gibbons, P.B. and Faloutsos, C., 2003, March. LOCI: Fast outlier detection using the local correlation integral. In *ICDE '03*, pp. 315-326. IEEE.

.. [#Pevny2016Loda] Pevný, T., 2016. Loda: Lightweight on-line detector of anomalies. *Machine Learning*, 102(2), pp.275-304.

.. [#Perini2020Quantifying] Perini, L., Vercruyssen, V., Davis, J. Quantifying the confidence of anomaly detectors in their example-wise predictions. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD)*, 2020.

.. [#Ramaswamy2000Efficient] Ramaswamy, S., Rastogi, R. and Shim, K., 2000, May. Efficient algorithms for mining outliers from large data sets. *ACM Sigmod Record*\ , 29(2), pp. 427-438.

.. [#Rousseeuw1999A] Rousseeuw, P.J. and Driessen, K.V., 1999. A fast algorithm for the minimum covariance determinant estimator. *Technometrics*\ , 41(3), pp.212-223.

.. [#Ruff2018Deep] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E. and Kloft, M., 2018, July. Deep one-class classification. In *International conference on machine learning* (pp. 4393-4402). PMLR.

.. [#Schlegl2017Unsupervised] Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U. and Langs, G., 2017, June. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In International conference on information processing in medical imaging (pp. 146-157). Springer, Cham.

.. [#Scholkopf2001Estimating] Scholkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J. and Williamson, R.C., 2001. Estimating the support of a high-dimensional distribution. *Neural Computation*, 13(7), pp.1443-1471.

.. [#Shyu2003A] Shyu, M.L., Chen, S.C., Sarinnapakorn, K. and Chang, L., 2003. A novel anomaly detection scheme based on principal component classifier. *MIAMI UNIV CORAL GABLES FL DEPT OF ELECTRICAL AND COMPUTER ENGINEERING*.

.. [#Sugiyama2013Rapid] Sugiyama, M. and Borgwardt, K., 2013. Rapid distance-based outlier detection via sampling. Advances in neural information processing systems, 26.

.. [#Tang2002Enhancing] Tang, J., Chen, Z., Fu, A.W.C. and Cheung, D.W., 2002, May. Enhancing effectiveness of outlier detections for low density patterns. In *Pacific-Asia Conference on Knowledge Discovery and Data Mining*, pp. 535-548. Springer, Berlin, Heidelberg.

.. [#Wang2020adVAE] Wang, X., Du, Y., Lin, S., Cui, P., Shen, Y. and Yang, Y., 2019. adVAE: A self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection. *Knowledge-Based Systems*.

.. [#Xu2023Deep] Xu, H., Pang, G., Wang, Y., Wang, Y., 2023. Deep isolation forest for anomaly detection. *IEEE Transactions on Knowledge and Data Engineering*.

.. [#You2017Provable] You, C., Robinson, D.P. and Vidal, R., 2017. Provable self-representation based outlier detection in a union of subspaces. In Proceedings of the IEEE conference on computer vision and pattern recognition.

.. [#Zenati2018Adversarially] Zenati, H., Romain, M., Foo, C.S., Lecouat, B. and Chandrasekhar, V., 2018, November. Adversarially learned anomaly detection. In 2018 IEEE International conference on data mining (ICDM) (pp. 727-736). IEEE.

.. [#Zhao2018XGBOD] Zhao, Y. and Hryniewicki, M.K. XGBOD: Improving Supervised Outlier Detection with Unsupervised Representation Learning. *IEEE International Joint Conference on Neural Networks*\ , 2018.

.. [#Zhao2019LSCP] Zhao, Y., Nasrullah, Z., Hryniewicki, M.K. and Li, Z., 2019, May. LSCP: Locally selective combination in parallel outlier ensembles. In *Proceedings of the 2019 SIAM International Conference on Data Mining (SDM)*, pp. 585-593. Society for Industrial and Applied Mathematics.

.. [#Zhao2021SUOD] Zhao, Y., Hu, X., Cheng, C., Wang, C., Wan, C., Wang, W., Yang, J., Bai, H., Li, Z., Xiao, C., Wang, Y., Qiao, Z., Sun, J. and Akoglu, L. (2021). SUOD: Accelerating Large-scale Unsupervised Heterogeneous Outlier Detection. *Conference on Machine Learning and Systems (MLSys)*.