yzhao062/Pyod

View on GitHub
pyod/models/inne.py

Summary

Maintainability
A
1 hr
Test Coverage
# -*- coding: utf-8 -*-
"""Isolation-based anomaly detection using nearest-neighbor ensembles.
Part of the codes are adapted from https://github.com/xhan97/inne
"""
# Author: Xin Han <xinhan197@gmail.com>
# License: BSD 2 clause

from __future__ import division
from __future__ import print_function

import numbers
from warnings import warn

import numpy as np
from sklearn.metrics import euclidean_distances
from sklearn.utils import check_array
from sklearn.utils.validation import check_is_fitted, check_random_state

from .base import BaseDetector
from ..utils.utility import MAX_INT, invert_order

MIN_FLOAT = np.finfo(float).eps


class INNE(BaseDetector):
    """ Isolation-based anomaly detection using nearest-neighbor ensembles.

    The INNE algorithm uses the nearest neighbour ensemble to isolate
    anomalies. It partitions the data space into regions using a subsample and
    determines an isolation score for each region. As each region adapts to
    local distribution, the calculated isolation score is a local measure that
    is relative to the local neighbourhood, enabling it to detect both global
    and local anomalies. INNE has linear time complexity to efficiently handle
    large and high-dimensional datasets with complex distributions.

    See :cite:`bandaragoda2018isolation` for details.

    Parameters
    ----------
    n_estimators : int, default=200
        The number of base estimators in the ensemble.

    max_samples : int or float, optional (default="auto")
        The number of samples to draw from X to train each base estimator.

            - If int, then draw `max_samples` samples.
            - If float, then draw `max_samples` * X.shape[0]` samples.
            - If "auto", then `max_samples=min(8, n_samples)`.

    contamination : float in (0., 0.5), optional (default=0.1)
        The amount of contamination of the data set, i.e. the proportion
        of outliers in the data set. Used when fitting to define the threshold
        on the decision function.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Attributes
    ----------
    max_samples_ : integer
        The actual number of samples

    decision_scores_ : numpy array of shape (n_samples,)
        The outlier scores of the training data.
        The higher, the more abnormal. Outliers tend to have higher
        scores. This value is available once the detector is
        fitted.

    threshold_ : float
        The threshold is based on ``contamination``. It is the
        ``n_samples * contamination`` most abnormal samples in
        ``decision_scores_``. The threshold is calculated for generating
        binary outlier labels.

    labels_ : int, either 0 or 1
        The binary labels of the training data. 0 stands for inliers
        and 1 for outliers/anomalies. It is generated by applying
        ``threshold_`` on ``decision_scores_``.
    """

    def __init__(self,
                 n_estimators=200,
                 max_samples="auto",
                 contamination=0.1,
                 random_state=None):
        self.n_estimators = n_estimators
        self.max_samples = max_samples
        self.random_state = random_state
        self.contamination = contamination

    def fit(self, X, y=None):
        """Fit detector. y is ignored in unsupervised methods.

        Parameters
        ----------
        X : numpy array of shape (n_samples, n_features)
            The input samples.

        y : Ignored
            Not used, present for API consistency by convention.

        Returns
        -------
        self : object
            Fitted estimator.
        """
        # validate inputs X and y (optional)

        # Check data
        X = check_array(X, accept_sparse=False)
        self._set_n_classes(y)

        n_samples = X.shape[0]
        if isinstance(self.max_samples, str):
            if self.max_samples == "auto":
                max_samples = min(8, n_samples)
            else:
                raise ValueError(
                    "max_samples (%s) is not supported."
                    'Valid choices are: "auto", int or'
                    "float"
                    % self.max_samples
                )

        elif isinstance(self.max_samples, numbers.Integral):
            if self.max_samples > n_samples:
                warn(
                    "max_samples (%s) is greater than the "
                    "total number of samples (%s). max_samples "
                    "will be set to n_samples for estimation."
                    % (self.max_samples, n_samples)
                )
                max_samples = n_samples
            else:
                max_samples = self.max_samples
        else:  # float
            if not 0.0 < self.max_samples <= 1.0:
                raise ValueError(
                    "max_samples must be in (0, 1], got %r" % self.max_samples
                )
            max_samples = int(self.max_samples * X.shape[0])
        self.max_samples_ = max_samples

        self._fit(X)
        self.decision_scores_ = invert_order(self._score_samples(X))
        self._process_decision_scores()
        return self

    def _fit(self, X):
        """ Build n_estimators sets of hyperspheres. 

        Parameters
        ----------
        X : numpy array of shape (n_samples, n_features)
            The training input samples. 

        Returns
        -------
        self : object
        """

        n_samples, n_features = X.shape
        self._centroids = np.empty(
            [self.n_estimators, self.max_samples_, n_features])
        self._ratio = np.empty([self.n_estimators, self.max_samples_])
        self._centroids_radius = np.empty(
            [self.n_estimators, self.max_samples_])

        random_state = check_random_state(self.random_state)
        self._seeds = random_state.randint(MAX_INT, size=self.n_estimators)

        for i in range(self.n_estimators):
            rnd = check_random_state(self._seeds[i])
            # randomly selected subsamples of size max_samples_ as centroids.
            center_index = rnd.choice(
                n_samples, self.max_samples_, replace=False)

            self._centroids[i] = X[center_index]
            center_dist = euclidean_distances(
                self._centroids[i], self._centroids[i], squared=True)
            np.fill_diagonal(center_dist, np.inf)
            # radius of each hypersphere is the Nearest Neighbors
            # distance of centroid.
            self._centroids_radius[i] = np.amin(center_dist, axis=1)
            # Nearest Neighbors of centroids
            cnn_index = np.argmin(center_dist, axis=1)
            cnn_radius = self._centroids_radius[i][cnn_index]

            self._ratio[i] = 1 - (cnn_radius + MIN_FLOAT) / \
                             (self._centroids_radius[i] + MIN_FLOAT)
        return self

    def decision_function(self, X):
        """Predict raw anomaly score of X using the fitted detector.

        The anomaly score of an input sample is computed based on different
        detector algorithms. For consistency, outliers are assigned with
        larger anomaly scores.

        Parameters
        ----------
        X : numpy array of shape (n_samples, n_features)
            The training input samples. 

        Returns
        -------
        anomaly_scores : numpy array of shape (n_samples,)
            The anomaly score of the input samples.
        """
        check_is_fitted(self, ['decision_scores_', 'threshold_', 'labels_'])
        # invert outlier scores. Outliers comes with higher outlier scores
        return invert_order(self._score_samples(X))

    def _score_samples(self, X):
        """
        Opposite of the anomaly score defined in the original paper.
        The anomaly score of an input sample is computed as
        the mean anomaly score over all set of hyperspheres.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input samples.

        Returns
        -------
        scores : ndarray of shape (n_samples,)
            The anomaly score of the input samples.
            The lower, the more abnormal.
        """

        # check data
        X = check_array(X, accept_sparse=False)
        isolation_scores = np.ones([self.n_estimators, X.shape[0]])

        # each test instance is evaluated against n_estimators sets of
        # hyperspheres
        for i in range(self.n_estimators):
            x_dists = euclidean_distances(X, self._centroids[i], squared=True)
            # find instances that are covered by at least one hypersphere.
            cover_radius = np.where(
                x_dists <= self._centroids_radius[i],
                self._centroids_radius[i], np.nan)
            x_covered = np.where(~np.isnan(cover_radius).all(axis=1))
            # the centroid of the hypersphere covering x and having the
            # smallest radius
            cnn_x = np.nanargmin(cover_radius[x_covered], axis=1)
            isolation_scores[i][x_covered] = self._ratio[i][cnn_x]
        # the isolation scores are averaged to produce the anomaly score
        scores = np.mean(isolation_scores, axis=0)
        return -scores