Fantom-foundation/go-lachesis

View on GitHub
ethapi/api.go

Summary

Maintainability
F
6 days
Test Coverage
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package ethapi

import (
    "bytes"
    "context"
    "errors"
    "fmt"
    "math/big"
    "strings"
    "time"

    "github.com/davecgh/go-spew/spew"
    "github.com/ethereum/go-ethereum/accounts"
    "github.com/ethereum/go-ethereum/accounts/abi"
    "github.com/ethereum/go-ethereum/accounts/keystore"
    "github.com/ethereum/go-ethereum/accounts/scwallet"
    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/common/hexutil"
    "github.com/ethereum/go-ethereum/common/math"
    "github.com/ethereum/go-ethereum/consensus/ethash"
    "github.com/ethereum/go-ethereum/core/types"
    "github.com/ethereum/go-ethereum/core/vm"
    "github.com/ethereum/go-ethereum/crypto"
    "github.com/ethereum/go-ethereum/log"
    "github.com/ethereum/go-ethereum/p2p"
    "github.com/ethereum/go-ethereum/params"
    "github.com/ethereum/go-ethereum/rlp"
    "github.com/ethereum/go-ethereum/rpc"
    "github.com/tyler-smith/go-bip39"

    "github.com/Fantom-foundation/go-lachesis/evmcore"
    "github.com/Fantom-foundation/go-lachesis/hash"
    "github.com/Fantom-foundation/go-lachesis/inter"
    "github.com/Fantom-foundation/go-lachesis/inter/idx"
    lachesisparams "github.com/Fantom-foundation/go-lachesis/lachesis/params"
)

const (
    defaultGasPrice = params.GWei
)

var (
    noUncles = []evmcore.EvmHeader{}
)

// PublicEthereumAPI provides an API to access Ethereum related information.
// It offers only methods that operate on public data that is freely available to anyone.
type PublicEthereumAPI struct {
    b Backend
}

// NewPublicEthereumAPI creates a new Ethereum protocol API.
func NewPublicEthereumAPI(b Backend) *PublicEthereumAPI {
    return &PublicEthereumAPI{b}
}

// GasPrice returns a suggestion for a gas price.
func (s *PublicEthereumAPI) GasPrice(ctx context.Context) (*hexutil.Big, error) {
    price, err := s.b.SuggestPrice(ctx)
    return (*hexutil.Big)(price), err
}

// ProtocolVersion returns the current Ethereum protocol version this node supports
func (s *PublicEthereumAPI) ProtocolVersion() hexutil.Uint {
    return hexutil.Uint(s.b.ProtocolVersion())
}

// Syncing returns true if node is syncing
func (s *PublicEthereumAPI) Syncing() (interface{}, error) {
    progress := s.b.Progress()
    // Return not syncing if the synchronisation already completed
    if time.Since(progress.CurrentBlockTime.Time()) <= 90*time.Minute { // should be >> MaxEmitInterval
        return false, nil
    }
    // Otherwise gather the block sync stats
    return map[string]interface{}{
        "startingBlock":    hexutil.Uint64(0), // back-compatibility
        "currentEpoch":     hexutil.Uint64(progress.CurrentEpoch),
        "currentBlock":     hexutil.Uint64(progress.CurrentBlock),
        "currentBlockHash": progress.CurrentBlockHash.Hex(),
        "currentBlockTime": hexutil.Uint64(progress.CurrentBlockTime),
        "highestBlock":     hexutil.Uint64(progress.HighestBlock),
        "highestEpoch":     hexutil.Uint64(progress.HighestEpoch),
        "pulledStates":     hexutil.Uint64(0), // back-compatibility
        "knownStates":      hexutil.Uint64(0), // back-compatibility
    }, nil
}

// PublicTxPoolAPI offers and API for the transaction pool. It only operates on data that is non confidential.
type PublicTxPoolAPI struct {
    b Backend
}

// NewPublicTxPoolAPI creates a new tx pool service that gives information about the transaction pool.
func NewPublicTxPoolAPI(b Backend) *PublicTxPoolAPI {
    return &PublicTxPoolAPI{b}
}

// Content returns the transactions contained within the transaction pool.
func (s *PublicTxPoolAPI) Content() map[string]map[string]map[string]*RPCTransaction {
    content := map[string]map[string]map[string]*RPCTransaction{
        "pending": make(map[string]map[string]*RPCTransaction),
        "queued":  make(map[string]map[string]*RPCTransaction),
    }
    pending, queue := s.b.TxPoolContent()

    // Flatten the pending transactions
    for account, txs := range pending {
        dump := make(map[string]*RPCTransaction)
        for _, tx := range txs {
            dump[fmt.Sprintf("%d", tx.Nonce())] = newRPCPendingTransaction(tx)
        }
        content["pending"][account.Hex()] = dump
    }
    // Flatten the queued transactions
    for account, txs := range queue {
        dump := make(map[string]*RPCTransaction)
        for _, tx := range txs {
            dump[fmt.Sprintf("%d", tx.Nonce())] = newRPCPendingTransaction(tx)
        }
        content["queued"][account.Hex()] = dump
    }
    return content
}

// Status returns the number of pending and queued transaction in the pool.
func (s *PublicTxPoolAPI) Status() map[string]hexutil.Uint {
    pending, queue := s.b.Stats()
    return map[string]hexutil.Uint{
        "pending": hexutil.Uint(pending),
        "queued":  hexutil.Uint(queue),
    }
}

// Inspect retrieves the content of the transaction pool and flattens it into an
// easily inspectable list.
func (s *PublicTxPoolAPI) Inspect() map[string]map[string]map[string]string {
    content := map[string]map[string]map[string]string{
        "pending": make(map[string]map[string]string),
        "queued":  make(map[string]map[string]string),
    }
    pending, queue := s.b.TxPoolContent()

    // Define a formatter to flatten a transaction into a string
    var format = func(tx *types.Transaction) string {
        if to := tx.To(); to != nil {
            return fmt.Sprintf("%s: %v wei + %v gas × %v wei", tx.To().Hex(), tx.Value(), tx.Gas(), tx.GasPrice())
        }
        return fmt.Sprintf("contract creation: %v wei + %v gas × %v wei", tx.Value(), tx.Gas(), tx.GasPrice())
    }
    // Flatten the pending transactions
    for account, txs := range pending {
        dump := make(map[string]string)
        for _, tx := range txs {
            dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx)
        }
        content["pending"][account.Hex()] = dump
    }
    // Flatten the queued transactions
    for account, txs := range queue {
        dump := make(map[string]string)
        for _, tx := range txs {
            dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx)
        }
        content["queued"][account.Hex()] = dump
    }
    return content
}

// PublicAccountAPI provides an API to access accounts managed by this node.
// It offers only methods that can retrieve accounts.
type PublicAccountAPI struct {
    am *accounts.Manager
}

// NewPublicAccountAPI creates a new PublicAccountAPI.
func NewPublicAccountAPI(am *accounts.Manager) *PublicAccountAPI {
    return &PublicAccountAPI{am: am}
}

// Accounts returns the collection of accounts this node manages
func (s *PublicAccountAPI) Accounts() []common.Address {
    return s.am.Accounts()
}

// PrivateAccountAPI provides an API to access accounts managed by this node.
// It offers methods to create, (un)lock en list accounts. Some methods accept
// passwords and are therefore considered private by default.
type PrivateAccountAPI struct {
    am        *accounts.Manager
    nonceLock *AddrLocker
    b         Backend
}

// NewPrivateAccountAPI create a new PrivateAccountAPI.
func NewPrivateAccountAPI(b Backend, nonceLock *AddrLocker) *PrivateAccountAPI {
    return &PrivateAccountAPI{
        am:        b.AccountManager(),
        nonceLock: nonceLock,
        b:         b,
    }
}

// ListAccounts will return a list of addresses for accounts this node manages.
func (s *PrivateAccountAPI) ListAccounts() []common.Address {
    return s.am.Accounts()
}

// RawWallet is a JSON representation of an accounts.Wallet interface, with its
// data contents extracted into plain fields.
type RawWallet struct {
    URL      string             `json:"url"`
    Status   string             `json:"status"`
    Failure  string             `json:"failure,omitempty"`
    Accounts []accounts.Account `json:"accounts,omitempty"`
}

// ListWallets will return a list of wallets this node manages.
func (s *PrivateAccountAPI) ListWallets() []RawWallet {
    wallets := make([]RawWallet, 0) // return [] instead of nil if empty
    for _, wallet := range s.am.Wallets() {
        status, failure := wallet.Status()

        raw := RawWallet{
            URL:      wallet.URL().String(),
            Status:   status,
            Accounts: wallet.Accounts(),
        }
        if failure != nil {
            raw.Failure = failure.Error()
        }
        wallets = append(wallets, raw)
    }
    return wallets
}

// OpenWallet initiates a hardware wallet opening procedure, establishing a USB
// connection and attempting to authenticate via the provided passphrase. Note,
// the method may return an extra challenge requiring a second open (e.g. the
// Trezor PIN matrix challenge).
func (s *PrivateAccountAPI) OpenWallet(url string, passphrase *string) error {
    wallet, err := s.am.Wallet(url)
    if err != nil {
        return err
    }
    pass := ""
    if passphrase != nil {
        pass = *passphrase
    }
    return wallet.Open(pass)
}

// DeriveAccount requests a HD wallet to derive a new account, optionally pinning
// it for later reuse.
func (s *PrivateAccountAPI) DeriveAccount(url string, path string, pin *bool) (accounts.Account, error) {
    wallet, err := s.am.Wallet(url)
    if err != nil {
        return accounts.Account{}, err
    }
    derivPath, err := accounts.ParseDerivationPath(path)
    if err != nil {
        return accounts.Account{}, err
    }
    if pin == nil {
        pin = new(bool)
    }
    return wallet.Derive(derivPath, *pin)
}

// NewAccount will create a new account and returns the address for the new account.
func (s *PrivateAccountAPI) NewAccount(password string) (common.Address, error) {
    ks, err := fetchKeystore(s.am)
    if err != nil {
        return common.Address{}, err
    }
    acc, err := ks.NewAccount(password)
    if err == nil {
        log.Info("Your new key was generated", "address", acc.Address)
        log.Warn("Please backup your key file!", "path", acc.URL.Path)
        log.Warn("Please remember your password!")
        return acc.Address, nil
    }
    return common.Address{}, err
}

// fetchKeystore retrieves the encrypted keystore from the account manager.
func fetchKeystore(am *accounts.Manager) (*keystore.KeyStore, error) {
    if ks := am.Backends(keystore.KeyStoreType); len(ks) > 0 {
        return ks[0].(*keystore.KeyStore), nil
    }
    return nil, errors.New("local keystore not used")
}

// ImportRawKey stores the given hex encoded ECDSA key into the key directory,
// encrypting it with the passphrase.
func (s *PrivateAccountAPI) ImportRawKey(privkey string, password string) (common.Address, error) {
    key, err := crypto.HexToECDSA(privkey)
    if err != nil {
        return common.Address{}, err
    }
    ks, err := fetchKeystore(s.am)
    if err != nil {
        return common.Address{}, err
    }
    acc, err := ks.ImportECDSA(key, password)
    return acc.Address, err
}

// UnlockAccount will unlock the account associated with the given address with
// the given password for duration seconds. If duration is nil it will use a
// default of 300 seconds. It returns an indication if the account was unlocked.
func (s *PrivateAccountAPI) UnlockAccount(ctx context.Context, addr common.Address, password string, duration *uint64) (bool, error) {
    // When the API is exposed by external RPC(http, ws etc), unless the user
    // explicitly specifies to allow the insecure account unlocking, otherwise
    // it is disabled.
    if s.b.ExtRPCEnabled() && !s.b.AccountManager().Config().InsecureUnlockAllowed {
        return false, errors.New("account unlock with HTTP access is forbidden")
    }

    const max = uint64(time.Duration(math.MaxInt64) / time.Second)
    var d time.Duration
    if duration == nil {
        d = 300 * time.Second
    } else if *duration > max {
        return false, errors.New("unlock duration too large")
    } else {
        d = time.Duration(*duration) * time.Second
    }
    ks, err := fetchKeystore(s.am)
    if err != nil {
        return false, err
    }
    err = ks.TimedUnlock(accounts.Account{Address: addr}, password, d)
    if err != nil {
        log.Warn("Failed account unlock attempt", "address", addr, "err", err)
    }
    return err == nil, err
}

// LockAccount will lock the account associated with the given address when it's unlocked.
func (s *PrivateAccountAPI) LockAccount(addr common.Address) bool {
    if ks, err := fetchKeystore(s.am); err == nil {
        return ks.Lock(addr) == nil
    }
    return false
}

// signTransaction sets defaults and signs the given transaction
// NOTE: the caller needs to ensure that the nonceLock is held, if applicable,
// and release it after the transaction has been submitted to the tx pool
func (s *PrivateAccountAPI) signTransaction(ctx context.Context, args *SendTxArgs, passwd string) (*types.Transaction, error) {
    // Look up the wallet containing the requested signer
    account := accounts.Account{Address: args.From}
    wallet, err := s.am.Find(account)
    if err != nil {
        return nil, err
    }
    // Set some sanity defaults and terminate on failure
    if err := args.setDefaults(ctx, s.b); err != nil {
        return nil, err
    }
    // Assemble the transaction and sign with the wallet
    tx := args.toTransaction()

    return wallet.SignTxWithPassphrase(account, passwd, tx, s.b.ChainConfig().ChainID)
}

// SendTransaction will create a transaction from the given arguments and
// tries to sign it with the key associated with args.To. If the given passwd isn't
// able to decrypt the key it fails.
func (s *PrivateAccountAPI) SendTransaction(ctx context.Context, args SendTxArgs, passwd string) (common.Hash, error) {
    if args.Nonce == nil {
        // Hold the addresse's mutex around signing to prevent concurrent assignment of
        // the same nonce to multiple accounts.
        s.nonceLock.LockAddr(args.From)
        defer s.nonceLock.UnlockAddr(args.From)
    }
    signed, err := s.signTransaction(ctx, &args, passwd)
    if err != nil {
        log.Warn("Failed transaction send attempt", "from", args.From, "to", args.To, "value", args.Value.ToInt(), "err", err)
        return common.Hash{}, err
    }
    return SubmitTransaction(ctx, s.b, signed)
}

// SignTransaction will create a transaction from the given arguments and
// tries to sign it with the key associated with args.To. If the given passwd isn't
// able to decrypt the key it fails. The transaction is returned in RLP-form, not broadcast
// to other nodes
func (s *PrivateAccountAPI) SignTransaction(ctx context.Context, args SendTxArgs, passwd string) (*SignTransactionResult, error) {
    // No need to obtain the noncelock mutex, since we won't be sending this
    // tx into the transaction pool, but right back to the user
    if args.Gas == nil {
        return nil, fmt.Errorf("gas not specified")
    }
    if args.GasPrice == nil {
        return nil, fmt.Errorf("gasPrice not specified")
    }
    if args.Nonce == nil {
        return nil, fmt.Errorf("nonce not specified")
    }
    // Before actually sign the transaction, ensure the transaction fee is reasonable.
    if err := checkTxFee(args.GasPrice.ToInt(), uint64(*args.Gas), s.b.RPCTxFeeCap()); err != nil {
        return nil, err
    }
    signed, err := s.signTransaction(ctx, &args, passwd)
    if err != nil {
        log.Warn("Failed transaction sign attempt", "from", args.From, "to", args.To, "value", args.Value.ToInt(), "err", err)
        return nil, err
    }
    data, err := rlp.EncodeToBytes(signed)
    if err != nil {
        return nil, err
    }
    return &SignTransactionResult{data, signed}, nil
}

// Sign calculates an Ethereum ECDSA signature for:
// keccack256("\x19Ethereum Signed Message:\n" + len(message) + message))
//
// Note, the produced signature conforms to the secp256k1 curve R, S and V values,
// where the V value will be 27 or 28 for legacy reasons.
//
// The key used to calculate the signature is decrypted with the given password.
//
// https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_sign
func (s *PrivateAccountAPI) Sign(ctx context.Context, data hexutil.Bytes, addr common.Address, passwd string) (hexutil.Bytes, error) {
    // Look up the wallet containing the requested signer
    account := accounts.Account{Address: addr}

    wallet, err := s.b.AccountManager().Find(account)
    if err != nil {
        return nil, err
    }
    // Assemble sign the data with the wallet
    signature, err := wallet.SignTextWithPassphrase(account, passwd, data)
    if err != nil {
        log.Warn("Failed data sign attempt", "address", addr, "err", err)
        return nil, err
    }
    signature[crypto.RecoveryIDOffset] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
    return signature, nil
}

// EcRecover returns the address for the account that was used to create the signature.
// Note, this function is compatible with eth_sign and personal_sign. As such it recovers
// the address of:
// hash = keccak256("\x19Ethereum Signed Message:\n"${message length}${message})
// addr = ecrecover(hash, signature)
//
// Note, the signature must conform to the secp256k1 curve R, S and V values, where
// the V value must be 27 or 28 for legacy reasons.
//
// https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_ecRecover
func (s *PrivateAccountAPI) EcRecover(ctx context.Context, data, sig hexutil.Bytes) (common.Address, error) {
    if len(sig) != crypto.SignatureLength {
        return common.Address{}, fmt.Errorf("signature must be %d bytes long", crypto.SignatureLength)
    }
    if sig[crypto.RecoveryIDOffset] != 27 && sig[crypto.RecoveryIDOffset] != 28 {
        return common.Address{}, fmt.Errorf("invalid Ethereum signature (V is not 27 or 28)")
    }
    sig[crypto.RecoveryIDOffset] -= 27 // Transform yellow paper V from 27/28 to 0/1

    rpk, err := crypto.SigToPub(accounts.TextHash(data), sig)
    if err != nil {
        return common.Address{}, err
    }
    return crypto.PubkeyToAddress(*rpk), nil
}

// SignAndSendTransaction was renamed to SendTransaction. This method is deprecated
// and will be removed in the future. It primary goal is to give clients time to update.
func (s *PrivateAccountAPI) SignAndSendTransaction(ctx context.Context, args SendTxArgs, passwd string) (common.Hash, error) {
    return s.SendTransaction(ctx, args, passwd)
}

// InitializeWallet initializes a new wallet at the provided URL, by generating and returning a new private key.
func (s *PrivateAccountAPI) InitializeWallet(ctx context.Context, url string) (string, error) {
    wallet, err := s.am.Wallet(url)
    if err != nil {
        return "", err
    }

    entropy, err := bip39.NewEntropy(256)
    if err != nil {
        return "", err
    }

    mnemonic, err := bip39.NewMnemonic(entropy)
    if err != nil {
        return "", err
    }

    seed := bip39.NewSeed(mnemonic, "")

    switch wallet := wallet.(type) {
    case *scwallet.Wallet:
        return mnemonic, wallet.Initialize(seed)
    default:
        return "", fmt.Errorf("specified wallet does not support initialization")
    }
}

// Unpair deletes a pairing between wallet and geth.
func (s *PrivateAccountAPI) Unpair(ctx context.Context, url string, pin string) error {
    wallet, err := s.am.Wallet(url)
    if err != nil {
        return err
    }

    switch wallet := wallet.(type) {
    case *scwallet.Wallet:
        return wallet.Unpair([]byte(pin))
    default:
        return fmt.Errorf("specified wallet does not support pairing")
    }
}

// PublicBlockChainAPI provides an API to access the Ethereum blockchain.
// It offers only methods that operate on public data that is freely available to anyone.
type PublicBlockChainAPI struct {
    b Backend
}

// NewPublicBlockChainAPI creates a new Ethereum blockchain API.
func NewPublicBlockChainAPI(b Backend) *PublicBlockChainAPI {
    return &PublicBlockChainAPI{b}
}

// ChainID returns the chainID value for transaction replay protection.
func (s *PublicBlockChainAPI) ChainID() *hexutil.Big {
    return (*hexutil.Big)(s.b.ChainConfig().ChainID)
}

// BlockNumber returns the block number of the chain head.
func (s *PublicBlockChainAPI) BlockNumber() hexutil.Uint64 {
    header, _ := s.b.HeaderByNumber(context.Background(), rpc.LatestBlockNumber) // latest header should always be available
    return hexutil.Uint64(header.Number.Uint64())
}

// GetBalance returns the amount of wei for the given address in the state of the
// given block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta
// block numbers are also allowed.
func (s *PublicBlockChainAPI) GetBalance(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Big, error) {
    state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
    if state == nil || err != nil {
        return nil, err
    }
    return (*hexutil.Big)(state.GetBalance(address)), state.Error()
}

// AccountResult is result struct for GetProof
type AccountResult struct {
    Address      common.Address  `json:"address"`
    AccountProof []string        `json:"accountProof"`
    Balance      *hexutil.Big    `json:"balance"`
    CodeHash     common.Hash     `json:"codeHash"`
    Nonce        hexutil.Uint64  `json:"nonce"`
    StorageHash  common.Hash     `json:"storageHash"`
    StorageProof []StorageResult `json:"storageProof"`
}

// StorageResult is result struct for GetProof
type StorageResult struct {
    Key   string       `json:"key"`
    Value *hexutil.Big `json:"value"`
    Proof []string     `json:"proof"`
}

// GetProof returns the Merkle-proof for a given account and optionally some storage keys.
func (s *PublicBlockChainAPI) GetProof(ctx context.Context, address common.Address, storageKeys []string, blockNr rpc.BlockNumberOrHash) (*AccountResult, error) {
    state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNr)
    if state == nil || err != nil {
        return nil, err
    }

    storageTrie := state.StorageTrie(address)
    storageHash := types.EmptyRootHash
    codeHash := state.GetCodeHash(address)
    storageProof := make([]StorageResult, len(storageKeys))

    // if we have a storageTrie, (which means the account exists), we can update the storagehash
    if storageTrie != nil {
        storageHash = storageTrie.Hash()
    } else {
        // no storageTrie means the account does not exist, so the codeHash is the hash of an empty bytearray.
        codeHash = crypto.Keccak256Hash(nil)
    }

    // create the proof for the storageKeys
    for i, key := range storageKeys {
        if storageTrie != nil {
            proof, storageError := state.GetStorageProof(address, common.HexToHash(key))
            if storageError != nil {
                return nil, storageError
            }
            storageProof[i] = StorageResult{key, (*hexutil.Big)(state.GetState(address, common.HexToHash(key)).Big()), common.ToHexArray(proof)}
        } else {
            storageProof[i] = StorageResult{key, &hexutil.Big{}, []string{}}
        }
    }

    // create the accountProof
    accountProof, proofErr := state.GetProof(address)
    if proofErr != nil {
        return nil, proofErr
    }

    return &AccountResult{
        Address:      address,
        AccountProof: common.ToHexArray(accountProof),
        Balance:      (*hexutil.Big)(state.GetBalance(address)),
        CodeHash:     codeHash,
        Nonce:        hexutil.Uint64(state.GetNonce(address)),
        StorageHash:  storageHash,
        StorageProof: storageProof,
    }, state.Error()
}

// GetHeaderByNumber returns the requested canonical block header.
// * When blockNr is -1 the chain head is returned.
// * When blockNr is -2 the pending chain head is returned.
func (s *PublicBlockChainAPI) GetHeaderByNumber(ctx context.Context, number rpc.BlockNumber) (map[string]interface{}, error) {
    header, err := s.b.HeaderByNumber(ctx, number)
    if header != nil && err == nil {
        response := s.rpcMarshalHeader(header, s.calculateLogsBloom(ctx, number))
        if number == rpc.PendingBlockNumber {
            // Pending header need to nil out a few fields
            for _, field := range []string{"hash", "nonce", "miner"} {
                response[field] = nil
            }
        }
        return response, err
    }
    return nil, err
}

// GetHeaderByHash returns the requested header by hash.
func (s *PublicBlockChainAPI) GetHeaderByHash(ctx context.Context, hash common.Hash) map[string]interface{} {
    header, _ := s.b.HeaderByHash(ctx, hash)
    if header != nil {
        return s.rpcMarshalHeader(header, s.calculateLogsBloom(ctx, rpc.BlockNumber(header.Number.Uint64())))
    }
    return nil
}

func (s *PublicBlockChainAPI) calculateLogsBloom(ctx context.Context, blkNumber rpc.BlockNumber) types.Bloom {
    if s.b.CalcLogsBloom() && blkNumber != rpc.EarliestBlockNumber {
        receipts, err := s.b.GetReceiptsByNumber(ctx, blkNumber)
        if err != nil {
            return types.Bloom{}
        }
        if receipts != nil {
            return types.CreateBloom(receipts)
        }
    }
    return types.Bloom{}
}

// GetBlockByNumber returns the requested canonical block.
// * When blockNr is -1 the chain head is returned.
// * When blockNr is -2 the pending chain head is returned.
// * When fullTx is true all transactions in the block are returned, otherwise
//   only the transaction hash is returned.
func (s *PublicBlockChainAPI) GetBlockByNumber(ctx context.Context, number rpc.BlockNumber, fullTx bool) (map[string]interface{}, error) {
    block, err := s.b.BlockByNumber(ctx, number)
    if block != nil && err == nil {
        response, err := s.rpcMarshalBlock(block, s.calculateLogsBloom(ctx, number), true, fullTx)
        if err == nil && number == rpc.PendingBlockNumber {
            // Pending blocks need to nil out a few fields
            for _, field := range []string{"hash", "nonce", "miner"} {
                response[field] = nil
            }
        }
        return response, err
    }
    return nil, err
}

// GetBlockByHash returns the requested block. When fullTx is true all transactions in the block are returned in full
// detail, otherwise only the transaction hash is returned.
func (s *PublicBlockChainAPI) GetBlockByHash(ctx context.Context, hash common.Hash, fullTx bool) (map[string]interface{}, error) {
    block, err := s.b.BlockByHash(ctx, hash)
    if block != nil {
        return s.rpcMarshalBlock(block, s.calculateLogsBloom(ctx, rpc.BlockNumber(block.NumberU64())), true, fullTx)
    }
    return nil, err
}

// GetUncleByBlockNumberAndIndex returns the uncle block for the given block hash and index. When fullTx is true
// all transactions in the block are returned in full detail, otherwise only the transaction hash is returned.
func (s *PublicBlockChainAPI) GetUncleByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) (map[string]interface{}, error) {
    block, err := s.b.BlockByNumber(ctx, blockNr)
    if block != nil {
        log.Debug("Requested uncle not found", "number", blockNr, "hash", block.Hash, "index", index)
        return nil, nil
    }
    return nil, err
}

// GetUncleByBlockHashAndIndex returns the uncle block for the given block hash and index. When fullTx is true
// all transactions in the block are returned in full detail, otherwise only the transaction hash is returned.
func (s *PublicBlockChainAPI) GetUncleByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) (map[string]interface{}, error) {
    block, err := s.b.BlockByHash(ctx, blockHash)
    if block != nil {
        log.Debug("Requested uncle not found", "number", block.Number, "hash", blockHash, "index", index)
        return nil, nil
    }
    return nil, err
}

// GetUncleCountByBlockNumber returns number of uncles in the block for the given block number
func (s *PublicBlockChainAPI) GetUncleCountByBlockNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint {
    if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
        n := hexutil.Uint(len(noUncles))
        return &n
    }
    return nil
}

// GetUncleCountByBlockHash returns number of uncles in the block for the given block hash
func (s *PublicBlockChainAPI) GetUncleCountByBlockHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint {
    if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
        n := hexutil.Uint(len(noUncles))
        return &n
    }
    return nil
}

// GetCode returns the code stored at the given address in the state for the given block number.
func (s *PublicBlockChainAPI) GetCode(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
    state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
    if state == nil || err != nil {
        return nil, err
    }
    code := state.GetCode(address)
    return code, state.Error()
}

// GetStorageAt returns the storage from the state at the given address, key and
// block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta block
// numbers are also allowed.
func (s *PublicBlockChainAPI) GetStorageAt(ctx context.Context, address common.Address, key string, blockNr rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
    state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNr)
    if state == nil || err != nil {
        return nil, err
    }
    res := state.GetState(address, common.HexToHash(key))
    return res[:], state.Error()
}

// CallArgs represents the arguments for a call.
type CallArgs struct {
    From     *common.Address `json:"from"`
    To       *common.Address `json:"to"`
    Gas      *hexutil.Uint64 `json:"gas"`
    GasPrice *hexutil.Big    `json:"gasPrice"`
    Value    *hexutil.Big    `json:"value"`
    Data     *hexutil.Bytes  `json:"data"`
}

// ToMessage converts CallArgs to the Message type used by the core evm
func (args *CallArgs) ToMessage(globalGasCap uint64) types.Message {
    // Set sender address or use zero address if none specified.
    var addr common.Address
    if args.From != nil {
        addr = *args.From
    }

    // Set default gas & gas price if none were set
    gas := globalGasCap
    if gas == 0 {
        gas = uint64(math.MaxUint64 / 2)
    }
    if args.Gas != nil {
        gas = uint64(*args.Gas)
    }
    if globalGasCap != 0 && globalGasCap < gas {
        log.Warn("Caller gas above allowance, capping", "requested", gas, "cap", globalGasCap)
        gas = globalGasCap
    }
    gasPrice := new(big.Int)
    if args.GasPrice != nil {
        gasPrice = args.GasPrice.ToInt()
    }

    value := new(big.Int)
    if args.Value != nil {
        value = args.Value.ToInt()
    }

    var data []byte
    if args.Data != nil {
        data = []byte(*args.Data)
    }

    msg := types.NewMessage(addr, args.To, 0, value, gas, gasPrice, data, false)
    return msg
}

// account indicates the overriding fields of account during the execution of
// a message call.
// Note, state and stateDiff can't be specified at the same time. If state is
// set, message execution will only use the data in the given state. Otherwise
// if statDiff is set, all diff will be applied first and then execute the call
// message.
type account struct {
    Nonce     *hexutil.Uint64              `json:"nonce"`
    Code      *hexutil.Bytes               `json:"code"`
    Balance   **hexutil.Big                `json:"balance"`
    State     *map[common.Hash]common.Hash `json:"state"`
    StateDiff *map[common.Hash]common.Hash `json:"stateDiff"`
}

func DoCall(ctx context.Context, b Backend, args CallArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides map[common.Address]account, vmCfg vm.Config, timeout time.Duration, globalGasCap uint64) (*evmcore.ExecutionResult, error) {
    defer func(start time.Time) { log.Debug("Executing EVM call finished", "runtime", time.Since(start)) }(time.Now())

    state, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
    if state == nil || err != nil {
        return nil, err
    }
    // Override the fields of specified contracts before execution.
    for addr, account := range overrides {
        // Override account nonce.
        if account.Nonce != nil {
            state.SetNonce(addr, uint64(*account.Nonce))
        }
        // Override account(contract) code.
        if account.Code != nil {
            state.SetCode(addr, *account.Code)
        }
        // Override account balance.
        if account.Balance != nil {
            state.SetBalance(addr, (*big.Int)(*account.Balance))
        }
        if account.State != nil && account.StateDiff != nil {
            return nil, fmt.Errorf("account %s has both 'state' and 'stateDiff'", addr.Hex())
        }
        // Replace entire state if caller requires.
        if account.State != nil {
            state.SetStorage(addr, *account.State)
        }
        // Apply state diff into specified accounts.
        if account.StateDiff != nil {
            for key, value := range *account.StateDiff {
                state.SetState(addr, key, value)
            }
        }
    }

    // Setup context so it may be cancelled the call has completed
    // or, in case of unmetered gas, setup a context with a timeout.
    var cancel context.CancelFunc
    if timeout > 0 {
        ctx, cancel = context.WithTimeout(ctx, timeout)
    } else {
        ctx, cancel = context.WithCancel(ctx)
    }
    // Make sure the context is cancelled when the call has completed
    // this makes sure resources are cleaned up.
    defer cancel()

    // Get a new instance of the EVM.
    msg := args.ToMessage(globalGasCap)
    evm, vmError, err := b.GetEVM(ctx, msg, state, header)
    if err != nil {
        return nil, err
    }
    // Wait for the context to be done and cancel the evm. Even if the
    // EVM has finished, cancelling may be done (repeatedly)
    go func() {
        <-ctx.Done()
        evm.Cancel()
    }()

    // Setup the gas pool (also for unmetered requests)
    // and apply the message.
    gp := new(evmcore.GasPool).AddGas(math.MaxUint64)
    result, err := evmcore.ApplyMessage(evm, msg, gp)
    if err := vmError(); err != nil {
        return nil, err
    }
    // If the timer caused an abort, return an appropriate error message
    if evm.Cancelled() {
        return nil, fmt.Errorf("execution aborted (timeout = %v)", timeout)
    }
    if err != nil {
        return result, fmt.Errorf("err: %w (supplied gas %d)", err, msg.Gas())
    }
    return result, nil
}

func newRevertError(result *evmcore.ExecutionResult) *revertError {
    reason, errUnpack := abi.UnpackRevert(result.Revert())
    err := errors.New("execution reverted")
    if errUnpack == nil {
        err = fmt.Errorf("execution reverted: %v", reason)
    }
    return &revertError{
        error:  err,
        reason: hexutil.Encode(result.Revert()),
    }
}

// revertError is an API error that encompassas an EVM revertal with JSON error
// code and a binary data blob.
type revertError struct {
    error
    reason string // revert reason hex encoded
}

// ErrorCode returns the JSON error code for a revertal.
// See: https://github.com/ethereum/wiki/wiki/JSON-RPC-Error-Codes-Improvement-Proposal
func (e *revertError) ErrorCode() int {
    return 3
}

// ErrorData returns the hex encoded revert reason.
func (e *revertError) ErrorData() interface{} {
    return e.reason
}

// Call executes the given transaction on the state for the given block number.
//
// Additionally, the caller can specify a batch of contract for fields overriding.
//
// Note, this function doesn't make and changes in the state/blockchain and is
// useful to execute and retrieve values.
func (s *PublicBlockChainAPI) Call(ctx context.Context, args CallArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *map[common.Address]account) (hexutil.Bytes, error) {
    var accounts map[common.Address]account
    if overrides != nil {
        accounts = *overrides
    }
    result, err := DoCall(ctx, s.b, args, blockNrOrHash, accounts, vm.Config{}, 5*time.Second, s.b.RPCGasCap())
    if err != nil {
        return nil, err
    }
    // If the result contains a revert reason, try to unpack and return it.
    if len(result.Revert()) > 0 {
        return nil, newRevertError(result)
    }
    return result.Return(), result.Err
}

// DoEstimateGas - binary search the gas requirement, as it may be higher than the amount used
func DoEstimateGas(ctx context.Context, b Backend, args CallArgs, blockNrOrHash rpc.BlockNumberOrHash, gasCap uint64) (hexutil.Uint64, error) {
    // Binary search the gas requirement, as it may be higher than the amount used
    var (
        lo  uint64 = params.TxGas - 1
        hi  uint64
        cap uint64
    )
    // Use zero address if sender unspecified.
    if args.From == nil {
        args.From = new(common.Address)
    }
    // Determine the highest gas limit can be used during the estimation.
    if args.Gas != nil && uint64(*args.Gas) >= params.TxGas {
        hi = uint64(*args.Gas)
    } else {
        hi = lachesisparams.MaxGasLimit()
    }
    // Recap the highest gas limit with account's available balance.
    if args.GasPrice != nil && args.GasPrice.ToInt().BitLen() != 0 {
        state, _, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
        if err != nil {
            return 0, err
        }
        balance := state.GetBalance(*args.From) // from can't be nil
        available := new(big.Int).Set(balance)
        if args.Value != nil {
            if args.Value.ToInt().Cmp(available) >= 0 {
                return 0, errors.New("insufficient funds for transfer")
            }
            available.Sub(available, args.Value.ToInt())
        }
        allowance := new(big.Int).Div(available, args.GasPrice.ToInt())

        // If the allowance is larger than maximum uint64, skip checking
        if allowance.IsUint64() && hi > allowance.Uint64() {
            transfer := args.Value
            if transfer == nil {
                transfer = new(hexutil.Big)
            }
            log.Warn("Gas estimation capped by limited funds", "original", hi, "balance", balance,
                "sent", transfer.ToInt(), "gasprice", args.GasPrice.ToInt(), "fundable", allowance)
            hi = allowance.Uint64()
        }
    }
    // Recap the highest gas allowance with specified gascap.
    if gasCap != 0 && hi > gasCap {
        log.Warn("Caller gas above allowance, capping", "requested", hi, "cap", gasCap)
        hi = gasCap
    }
    cap = hi

    // Create a helper to check if a gas allowance results in an executable transaction
    executable := func(gas uint64) (bool, *evmcore.ExecutionResult, error) {
        args.Gas = (*hexutil.Uint64)(&gas)

        result, err := DoCall(ctx, b, args, blockNrOrHash, nil, vm.Config{}, 0, gasCap)
        if err != nil {
            if errors.Is(err, evmcore.ErrIntrinsicGas) {
                return true, nil, nil // Special case, raise gas limit
            }
            return true, nil, err // Bail out
        }
        return result.Failed(), result, nil
    }
    // Execute the binary search and hone in on an executable gas limit
    for lo+1 < hi {
        mid := (hi + lo) / 2
        failed, _, err := executable(mid)

        // If the error is not nil(consensus error), it means the provided message
        // call or transaction will never be accepted no matter how much gas it is
        // assigned. Return the error directly, don't struggle any more.
        if err != nil {
            return 0, err
        }
        if failed {
            lo = mid
        } else {
            hi = mid
        }
    }
    // Reject the transaction as invalid if it still fails at the highest allowance
    if hi == cap {
        failed, result, err := executable(hi)
        if err != nil {
            return 0, err
        }
        if failed {
            if result != nil && result.Err != vm.ErrOutOfGas {
                if len(result.Revert()) > 0 {
                    return 0, newRevertError(result)
                }
                return 0, result.Err
            }
            // Otherwise, the specified gas cap is too low
            return 0, fmt.Errorf("gas required exceeds allowance (%d)", cap)
        }
    }
    return hexutil.Uint64(hi), nil
}

// EstimateGas returns an estimate of the amount of gas needed to execute the
// given transaction against the current pending block.
func (s *PublicBlockChainAPI) EstimateGas(ctx context.Context, args CallArgs, blockNrOrHash *rpc.BlockNumberOrHash) (hexutil.Uint64, error) {
    bNrOrHash := rpc.BlockNumberOrHashWithNumber(rpc.LatestBlockNumber)
    if blockNrOrHash != nil {
        bNrOrHash = *blockNrOrHash
    }
    return DoEstimateGas(ctx, s.b, args, bNrOrHash, s.b.RPCGasCap())
}

// ExecutionResult groups all structured logs emitted by the EVM
// while replaying a transaction in debug mode as well as transaction
// execution status, the amount of gas used and the return value
type ExecutionResult struct {
    Gas         uint64         `json:"gas"`
    Failed      bool           `json:"failed"`
    ReturnValue string         `json:"returnValue"`
    StructLogs  []StructLogRes `json:"structLogs"`
}

// StructLogRes stores a structured log emitted by the EVM while replaying a
// transaction in debug mode
type StructLogRes struct {
    Pc      uint64             `json:"pc"`
    Op      string             `json:"op"`
    Gas     uint64             `json:"gas"`
    GasCost uint64             `json:"gasCost"`
    Depth   int                `json:"depth"`
    Error   error              `json:"error,omitempty"`
    Stack   *[]string          `json:"stack,omitempty"`
    Memory  *[]string          `json:"memory,omitempty"`
    Storage *map[string]string `json:"storage,omitempty"`
}

// FormatLogs formats EVM returned structured logs for json output
func FormatLogs(logs []vm.StructLog) []StructLogRes {
    formatted := make([]StructLogRes, len(logs))
    for index, trace := range logs {
        formatted[index] = StructLogRes{
            Pc:      trace.Pc,
            Op:      trace.Op.String(),
            Gas:     trace.Gas,
            GasCost: trace.GasCost,
            Depth:   trace.Depth,
            Error:   trace.Err,
        }
        if trace.Stack != nil {
            stack := make([]string, len(trace.Stack))
            for i, stackValue := range trace.Stack {
                stack[i] = fmt.Sprintf("%x", math.PaddedBigBytes(stackValue, 32))
            }
            formatted[index].Stack = &stack
        }
        if trace.Memory != nil {
            memory := make([]string, 0, (len(trace.Memory)+31)/32)
            for i := 0; i+32 <= len(trace.Memory); i += 32 {
                memory = append(memory, fmt.Sprintf("%x", trace.Memory[i:i+32]))
            }
            formatted[index].Memory = &memory
        }
        if trace.Storage != nil {
            storage := make(map[string]string)
            for i, storageValue := range trace.Storage {
                storage[fmt.Sprintf("%x", i)] = fmt.Sprintf("%x", storageValue)
            }
            formatted[index].Storage = &storage
        }
    }
    return formatted
}

// RPCMarshalEventHeader converts the given header to the RPC output .
func RPCMarshalEventHeader(header *inter.EventHeaderData) map[string]interface{} {
    return map[string]interface{}{
        "version":          header.Version,
        "epoch":            header.Epoch,
        "seq":              header.Seq,
        "hash":             hexutil.Bytes(header.Hash().Bytes()),
        "frame":            header.Frame,
        "isRoot":           header.IsRoot,
        "creator":          header.Creator,
        "prevEpochHash":    header.PrevEpochHash,
        "parents":          eventIDsToHex(header.Parents),
        "lamport":          header.Lamport,
        "claimedTime":      header.ClaimedTime,
        "medianTime":       header.MedianTime,
        "extraData":        hexutil.Bytes(header.Extra),
        "transactionsRoot": hexutil.Bytes(header.TxHash.Bytes()),
        "gasPowerLeft": map[string]interface{}{
            "shortTerm": header.GasPowerLeft.Gas[idx.ShortTermGas],
            "longTerm":  header.GasPowerLeft.Gas[idx.LongTermGas],
        },
        "gasPowerUsed": header.GasPowerUsed,
    }
}

// RPCMarshalEvent converts the given event to the RPC output which depends on fullTx. If inclTx is true transactions are
// returned. When fullTx is true the returned block contains full transaction details, otherwise it will only contain
// transaction hashes.
func RPCMarshalEvent(event *inter.Event, inclTx bool, fullTx bool) (map[string]interface{}, error) {
    fields := RPCMarshalEventHeader(&event.EventHeaderData)
    fields["size"] = event.Size()

    if inclTx {
        formatTx := func(tx *types.Transaction) (interface{}, error) {
            return tx.Hash(), nil
        }
        if fullTx {
            // TODO full txs for events API
            //formatTx = func(tx *types.Transaction) (interface{}, error) {
            //    return newRPCTransactionFromBlockHash(event, tx.Hash()), nil
            //}
        }
        txs := event.Transactions
        transactions := make([]interface{}, len(txs))
        var err error
        for i, tx := range txs {
            if transactions[i], err = formatTx(tx); err != nil {
                return nil, err
            }
        }

        fields["transactions"] = transactions
    }

    return fields, nil
}

func eventIDsToHex(ids hash.Events) []hexutil.Bytes {
    res := make([]hexutil.Bytes, len(ids))
    for i, id := range ids {
        res[i] = eventIDToHex(id)
    }
    return res
}

func eventIDToHex(id hash.Event) hexutil.Bytes {
    return hexutil.Bytes(id.Bytes())
}

// RPCMarshalHeader converts the given header to the RPC output .
func RPCMarshalHeader(head *evmcore.EvmHeader, bloom types.Bloom) map[string]interface{} {
    return map[string]interface{}{
        "number":           (*hexutil.Big)(head.Number),
        "hash":             head.Hash, // store EvmBlock's hash in extra, because extra is always empty
        "parentHash":       head.ParentHash,
        "nonce":            types.BlockNonce{},
        "mixHash":          common.Hash{},
        "sha3Uncles":       types.EmptyUncleHash,
        "logsBloom":        bloom,
        "stateRoot":        head.Root,
        "miner":            head.Coinbase,
        "difficulty":       (*hexutil.Big)(new(big.Int)),
        "extraData":        hexutil.Bytes([]byte{}),
        "size":             hexutil.Uint64(head.EthHeader().Size()),
        "gasLimit":         hexutil.Uint64(0xffffffffffff), // don't use too much bits here to avoid parsing issues
        "gasUsed":          hexutil.Uint64(head.GasUsed),
        "timestamp":        hexutil.Uint64(head.Time.Unix()),
        "timestampNano":    hexutil.Uint64(head.Time),
        "transactionsRoot": head.TxHash,
        "receiptsRoot":     common.Hash{},
    }
}

// RPCMarshalBlock converts the given block to the RPC output which depends on fullTx. If inclTx is true transactions are
// returned. When fullTx is true the returned block contains full transaction details, otherwise it will only contain
// transaction hashes.
func RPCMarshalBlock(block *evmcore.EvmBlock, bloom types.Bloom, inclTx bool, fullTx bool) (map[string]interface{}, error) {
    fields := RPCMarshalHeader(block.Header(), bloom)
    fields["size"] = hexutil.Uint64(block.EthBlock().Size())

    if inclTx {
        formatTx := func(tx *types.Transaction) (interface{}, error) {
            return tx.Hash(), nil
        }
        if fullTx {
            formatTx = func(tx *types.Transaction) (interface{}, error) {
                return newRPCTransactionFromBlockHash(block, tx.Hash()), nil
            }
        }
        txs := block.Transactions
        transactions := make([]interface{}, len(txs))
        var err error
        for i, tx := range txs {
            if transactions[i], err = formatTx(tx); err != nil {
                return nil, err
            }
        }
        fields["transactions"] = transactions
    }
    uncles := noUncles
    uncleHashes := make([]common.Hash, len(uncles))
    for i, uncle := range uncles {
        uncleHashes[i] = uncle.Hash
    }
    fields["uncles"] = uncleHashes

    return fields, nil
}

// rpcMarshalHeader uses the generalized output filler, then adds the total difficulty field, which requires
// a `PublicBlockchainAPI`.
func (s *PublicBlockChainAPI) rpcMarshalHeader(header *evmcore.EvmHeader, bloom types.Bloom) map[string]interface{} {
    fields := RPCMarshalHeader(header, bloom)
    fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(header.Hash))
    return fields
}

// rpcMarshalBlock uses the generalized output filler, then adds the total difficulty field, which requires
// a `PublicBlockchainAPI`.
func (s *PublicBlockChainAPI) rpcMarshalBlock(b *evmcore.EvmBlock, bloom types.Bloom, inclTx bool, fullTx bool) (map[string]interface{}, error) {
    fields, err := RPCMarshalBlock(b, bloom, inclTx, fullTx)
    if err != nil {
        return nil, err
    }
    fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(b.Hash))
    return fields, err
}

// RPCTransaction represents a transaction that will serialize to the RPC representation of a transaction
type RPCTransaction struct {
    BlockHash        *common.Hash    `json:"blockHash"`
    BlockNumber      *hexutil.Big    `json:"blockNumber"`
    From             common.Address  `json:"from"`
    Gas              hexutil.Uint64  `json:"gas"`
    GasPrice         *hexutil.Big    `json:"gasPrice"`
    Hash             common.Hash     `json:"hash"`
    Input            hexutil.Bytes   `json:"input"`
    Nonce            hexutil.Uint64  `json:"nonce"`
    To               *common.Address `json:"to"`
    TransactionIndex *hexutil.Uint64 `json:"transactionIndex"`
    Value            *hexutil.Big    `json:"value"`
    V                *hexutil.Big    `json:"v"`
    R                *hexutil.Big    `json:"r"`
    S                *hexutil.Big    `json:"s"`
}

// newRPCTransaction returns a transaction that will serialize to the RPC
// representation, with the given location metadata set (if available).
func newRPCTransaction(tx *types.Transaction, blockHash common.Hash, blockNumber uint64, index uint64) *RPCTransaction {
    var signer types.Signer = types.FrontierSigner{}
    if tx.Protected() {
        signer = types.NewEIP155Signer(tx.ChainId())
    }
    from, _ := types.Sender(signer, tx)
    v, r, s := tx.RawSignatureValues()

    result := &RPCTransaction{
        From:     from,
        Gas:      hexutil.Uint64(tx.Gas()),
        GasPrice: (*hexutil.Big)(tx.GasPrice()),
        Hash:     tx.Hash(),
        Input:    hexutil.Bytes(tx.Data()),
        Nonce:    hexutil.Uint64(tx.Nonce()),
        To:       tx.To(),
        Value:    (*hexutil.Big)(tx.Value()),
        V:        (*hexutil.Big)(v),
        R:        (*hexutil.Big)(r),
        S:        (*hexutil.Big)(s),
    }
    if blockHash != hash.Zero {
        result.BlockHash = &blockHash
        result.BlockNumber = (*hexutil.Big)(new(big.Int).SetUint64(blockNumber))
        result.TransactionIndex = (*hexutil.Uint64)(&index)
    }
    return result
}

// newRPCPendingTransaction returns a pending transaction that will serialize to the RPC representation
func newRPCPendingTransaction(tx *types.Transaction) *RPCTransaction {
    return newRPCTransaction(tx, common.Hash{}, 0, 0)
}

// newRPCTransactionFromBlockIndex returns a transaction that will serialize to the RPC representation.
func newRPCTransactionFromBlockIndex(b *evmcore.EvmBlock, index uint64) *RPCTransaction {
    txs := b.Transactions
    if index >= uint64(len(txs)) {
        return nil
    }
    return newRPCTransaction(txs[index], b.Hash, b.NumberU64(), index)
}

// newRPCRawTransactionFromBlockIndex returns the bytes of a transaction given a block and a transaction index.
func newRPCRawTransactionFromBlockIndex(b *evmcore.EvmBlock, index uint64) hexutil.Bytes {
    txs := b.Transactions
    if index >= uint64(len(txs)) {
        return nil
    }
    blob, _ := rlp.EncodeToBytes(txs[index])
    return blob
}

// newRPCTransactionFromBlockHash returns a transaction that will serialize to the RPC representation.
func newRPCTransactionFromBlockHash(b *evmcore.EvmBlock, hash common.Hash) *RPCTransaction {
    for idx, tx := range b.Transactions {
        if tx.Hash() == hash {
            return newRPCTransactionFromBlockIndex(b, uint64(idx))
        }
    }
    return nil
}

// PublicTransactionPoolAPI exposes methods for the RPC interface
type PublicTransactionPoolAPI struct {
    b         Backend
    nonceLock *AddrLocker
}

// NewPublicTransactionPoolAPI creates a new RPC service with methods specific for the transaction pool.
func NewPublicTransactionPoolAPI(b Backend, nonceLock *AddrLocker) *PublicTransactionPoolAPI {
    return &PublicTransactionPoolAPI{b, nonceLock}
}

// GetBlockTransactionCountByNumber returns the number of transactions in the block with the given block number.
func (s *PublicTransactionPoolAPI) GetBlockTransactionCountByNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint {
    if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
        n := hexutil.Uint(len(block.Transactions))
        return &n
    }
    return nil
}

// GetBlockTransactionCountByHash returns the number of transactions in the block with the given hash.
func (s *PublicTransactionPoolAPI) GetBlockTransactionCountByHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint {
    if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
        n := hexutil.Uint(len(block.Transactions))
        return &n
    }
    return nil
}

// GetTransactionByBlockNumberAndIndex returns the transaction for the given block number and index.
func (s *PublicTransactionPoolAPI) GetTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) *RPCTransaction {
    if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
        return newRPCTransactionFromBlockIndex(block, uint64(index))
    }
    return nil
}

// GetTransactionByBlockHashAndIndex returns the transaction for the given block hash and index.
func (s *PublicTransactionPoolAPI) GetTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) *RPCTransaction {
    if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
        return newRPCTransactionFromBlockIndex(block, uint64(index))
    }
    return nil
}

// GetRawTransactionByBlockNumberAndIndex returns the bytes of the transaction for the given block number and index.
func (s *PublicTransactionPoolAPI) GetRawTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) hexutil.Bytes {
    if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
        return newRPCRawTransactionFromBlockIndex(block, uint64(index))
    }
    return nil
}

// GetRawTransactionByBlockHashAndIndex returns the bytes of the transaction for the given block hash and index.
func (s *PublicTransactionPoolAPI) GetRawTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) hexutil.Bytes {
    if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
        return newRPCRawTransactionFromBlockIndex(block, uint64(index))
    }
    return nil
}

// GetTransactionCount returns the number of transactions the given address has sent for the given block number
func (s *PublicTransactionPoolAPI) GetTransactionCount(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Uint64, error) {
    // Ask transaction pool for the nonce which includes pending transactions
    if blockNr, ok := blockNrOrHash.Number(); ok && blockNr == rpc.PendingBlockNumber {
        nonce, err := s.b.GetPoolNonce(ctx, address)
        if err != nil {
            return nil, err
        }
        return (*hexutil.Uint64)(&nonce), nil
    }
    // Resolve block number and use its state to ask for the nonce
    state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
    if state == nil || err != nil {
        return nil, err
    }
    nonce := state.GetNonce(address)
    return (*hexutil.Uint64)(&nonce), state.Error()
}

// GetTransactionByHash returns the transaction for the given hash
func (s *PublicTransactionPoolAPI) GetTransactionByHash(ctx context.Context, hash common.Hash) (*RPCTransaction, error) {
    // Try to return an already finalized transaction
    tx, blockNumber, index, err := s.b.GetTransaction(ctx, hash)
    if err != nil {
        return nil, err
    }
    if tx != nil {
        header, err := s.b.HeaderByNumber(ctx, rpc.BlockNumber(blockNumber)) // retrieve header to get block hash
        if err != nil {
            return nil, err
        }
        return newRPCTransaction(tx, header.Hash, blockNumber, index), nil
    }
    // No finalized transaction, try to retrieve it from the pool
    if tx := s.b.GetPoolTransaction(hash); tx != nil {
        return newRPCPendingTransaction(tx), nil
    }

    // Transaction unknown, return as such
    return nil, nil
}

// GetRawTransactionByHash returns the bytes of the transaction for the given hash.
func (s *PublicTransactionPoolAPI) GetRawTransactionByHash(ctx context.Context, hash common.Hash) (hexutil.Bytes, error) {
    // Retrieve a finalized transaction, or a pooled otherwise
    tx, _, _, err := s.b.GetTransaction(ctx, hash)
    if err != nil {
        return nil, err
    }
    if tx == nil {
        if tx = s.b.GetPoolTransaction(hash); tx == nil {
            // Transaction not found anywhere, abort
            return nil, nil
        }
    }
    // Serialize to RLP and return
    return rlp.EncodeToBytes(tx)
}

// GetTransactionReceipt returns the transaction receipt for the given transaction hash.
func (s *PublicTransactionPoolAPI) GetTransactionReceipt(ctx context.Context, hash common.Hash) (map[string]interface{}, error) {
    tx, blockNumber, index, err := s.b.GetTransaction(ctx, hash)
    if tx == nil || err != nil {
        return nil, err
    }
    header, err := s.b.HeaderByNumber(ctx, rpc.BlockNumber(blockNumber)) // retrieve header to get block hash
    if header == nil || err != nil {
        return nil, err
    }
    receipts, err := s.b.GetReceiptsByNumber(ctx, rpc.BlockNumber(blockNumber))
    if receipts == nil || err != nil {
        return nil, err
    }
    if len(receipts) <= int(index) {
        return nil, nil
    }
    receipt := receipts[index]

    for _, l := range receipt.Logs {
        l.TxHash = hash
        l.BlockHash = header.Hash
        l.BlockNumber = blockNumber
    }

    var signer types.Signer = types.FrontierSigner{}
    if tx.Protected() {
        signer = types.NewEIP155Signer(tx.ChainId())
    }
    from, _ := types.Sender(signer, tx)

    fields := map[string]interface{}{
        "blockHash":         header.Hash,
        "blockNumber":       hexutil.Uint64(blockNumber),
        "transactionHash":   hash,
        "transactionIndex":  hexutil.Uint64(index),
        "from":              from,
        "to":                tx.To(),
        "gasUsed":           hexutil.Uint64(receipt.GasUsed),
        "cumulativeGasUsed": hexutil.Uint64(receipt.CumulativeGasUsed),
        "contractAddress":   nil,
        "logs":              receipt.Logs,
        "logsBloom":         &receipt.Bloom,
    }

    // Assign receipt status or post state.
    if len(receipt.PostState) > 0 {
        fields["root"] = hexutil.Bytes(receipt.PostState)
    } else {
        fields["status"] = hexutil.Uint(receipt.Status)
    }
    if receipt.Logs == nil {
        fields["logs"] = [][]*types.Log{}
    }
    // If the ContractAddress is 20 0x0 bytes, assume it is not a contract creation
    if receipt.ContractAddress != (common.Address{}) {
        fields["contractAddress"] = receipt.ContractAddress
    }
    return fields, nil
}

// sign is a helper function that signs a transaction with the private key of the given address.
func (s *PublicTransactionPoolAPI) sign(addr common.Address, tx *types.Transaction) (*types.Transaction, error) {
    // Look up the wallet containing the requested signer
    account := accounts.Account{Address: addr}

    wallet, err := s.b.AccountManager().Find(account)
    if err != nil {
        return nil, err
    }
    // Request the wallet to sign the transaction
    return wallet.SignTx(account, tx, s.b.ChainConfig().ChainID)
}

// SendTxArgs represents the arguments to sumbit a new transaction into the transaction pool.
type SendTxArgs struct {
    From     common.Address  `json:"from"`
    To       *common.Address `json:"to"`
    Gas      *hexutil.Uint64 `json:"gas"`
    GasPrice *hexutil.Big    `json:"gasPrice"`
    Value    *hexutil.Big    `json:"value"`
    Nonce    *hexutil.Uint64 `json:"nonce"`
    // We accept "data" and "input" for backwards-compatibility reasons. "input" is the
    // newer name and should be preferred by clients.
    Data  *hexutil.Bytes `json:"data"`
    Input *hexutil.Bytes `json:"input"`
}

// setDefaults is a helper function that fills in default values for unspecified tx fields.
func (args *SendTxArgs) setDefaults(ctx context.Context, b Backend) error {
    if args.GasPrice == nil {
        price, err := b.SuggestPrice(ctx)
        if err != nil {
            return err
        }
        args.GasPrice = (*hexutil.Big)(price)
    }
    if args.Value == nil {
        args.Value = new(hexutil.Big)
    }
    if args.Nonce == nil {
        nonce, err := b.GetPoolNonce(ctx, args.From)
        if err != nil {
            return err
        }
        args.Nonce = (*hexutil.Uint64)(&nonce)
    }
    if args.Data != nil && args.Input != nil && !bytes.Equal(*args.Data, *args.Input) {
        return errors.New(`both "data" and "input" are set and not equal. Please use "input" to pass transaction call data.`)
    }
    if args.To == nil {
        // Contract creation
        var input []byte
        if args.Data != nil {
            input = *args.Data
        } else if args.Input != nil {
            input = *args.Input
        }
        if len(input) == 0 {
            return errors.New(`contract creation without any data provided`)
        }
    }
    // Estimate the gas usage if necessary.
    if args.Gas == nil {
        // For backwards-compatibility reason, we try both input and data
        // but input is preferred.
        input := args.Input
        if input == nil {
            input = args.Data
        }
        callArgs := CallArgs{
            From:     &args.From, // From shouldn't be nil
            To:       args.To,
            GasPrice: args.GasPrice,
            Value:    args.Value,
            Data:     input,
        }
        latestBlockNr := rpc.BlockNumberOrHashWithNumber(rpc.LatestBlockNumber)
        estimated, err := DoEstimateGas(ctx, b, callArgs, latestBlockNr, b.RPCGasCap())
        if err != nil {
            return err
        }
        args.Gas = &estimated
        log.Trace("Estimate gas usage automatically", "gas", args.Gas)
    }
    return nil
}

func (args *SendTxArgs) toTransaction() *types.Transaction {
    var input []byte
    if args.Input != nil {
        input = *args.Input
    } else if args.Data != nil {
        input = *args.Data
    }
    if args.To == nil {
        return types.NewContractCreation(uint64(*args.Nonce), (*big.Int)(args.Value), uint64(*args.Gas), (*big.Int)(args.GasPrice), input)
    }
    return types.NewTransaction(uint64(*args.Nonce), *args.To, (*big.Int)(args.Value), uint64(*args.Gas), (*big.Int)(args.GasPrice), input)
}

// SubmitTransaction is a helper function that submits tx to txPool and logs a message.
func SubmitTransaction(ctx context.Context, b Backend, tx *types.Transaction) (common.Hash, error) {
    // If the transaction fee cap is already specified, ensure the
    // fee of the given transaction is _reasonable_.
    if err := checkTxFee(tx.GasPrice(), tx.Gas(), b.RPCTxFeeCap()); err != nil {
        return common.Hash{}, err
    }
    if err := b.SendTx(ctx, tx); err != nil {
        return common.Hash{}, err
    }
    if tx.To() == nil {
        signer := types.MakeSigner(b.ChainConfig(), b.CurrentBlock().Number)
        from, err := types.Sender(signer, tx)
        if err != nil {
            return common.Hash{}, err
        }
        addr := crypto.CreateAddress(from, tx.Nonce())
        log.Info("Submitted contract creation", "fullhash", tx.Hash().Hex(), "contract", addr.Hex())
    } else {
        log.Info("Submitted transaction", "fullhash", tx.Hash().Hex(), "recipient", tx.To())
    }
    return tx.Hash(), nil
}

// SendTransaction creates a transaction for the given argument, sign it and submit it to the
// transaction pool.
func (s *PublicTransactionPoolAPI) SendTransaction(ctx context.Context, args SendTxArgs) (common.Hash, error) {
    // Look up the wallet containing the requested signer
    account := accounts.Account{Address: args.From}

    wallet, err := s.b.AccountManager().Find(account)
    if err != nil {
        return common.Hash{}, err
    }

    if args.Nonce == nil {
        // Hold the addresse's mutex around signing to prevent concurrent assignment of
        // the same nonce to multiple accounts.
        s.nonceLock.LockAddr(args.From)
        defer s.nonceLock.UnlockAddr(args.From)
    }

    // Set some sanity defaults and terminate on failure
    if err := args.setDefaults(ctx, s.b); err != nil {
        return common.Hash{}, err
    }
    // Assemble the transaction and sign with the wallet
    tx := args.toTransaction()

    signed, err := wallet.SignTx(account, tx, s.b.ChainConfig().ChainID)
    if err != nil {
        return common.Hash{}, err
    }
    return SubmitTransaction(ctx, s.b, signed)
}

// FillTransaction fills the defaults (nonce, gas, gasPrice) on a given unsigned transaction,
// and returns it to the caller for further processing (signing + broadcast)
func (s *PublicTransactionPoolAPI) FillTransaction(ctx context.Context, args SendTxArgs) (*SignTransactionResult, error) {
    // Set some sanity defaults and terminate on failure
    if err := args.setDefaults(ctx, s.b); err != nil {
        return nil, err
    }
    // Assemble the transaction and obtain rlp
    tx := args.toTransaction()
    data, err := rlp.EncodeToBytes(tx)
    if err != nil {
        return nil, err
    }
    return &SignTransactionResult{data, tx}, nil
}

// SendRawTransaction will add the signed transaction to the transaction pool.
// The sender is responsible for signing the transaction and using the correct nonce.
func (s *PublicTransactionPoolAPI) SendRawTransaction(ctx context.Context, encodedTx hexutil.Bytes) (common.Hash, error) {
    tx := new(types.Transaction)
    if err := rlp.DecodeBytes(encodedTx, tx); err != nil {
        return common.Hash{}, err
    }
    return SubmitTransaction(ctx, s.b, tx)
}

// Sign calculates an ECDSA signature for:
// keccack256("\x19Ethereum Signed Message:\n" + len(message) + message).
//
// Note, the produced signature conforms to the secp256k1 curve R, S and V values,
// where the V value will be 27 or 28 for legacy reasons.
//
// The account associated with addr must be unlocked.
//
// https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign
func (s *PublicTransactionPoolAPI) Sign(addr common.Address, data hexutil.Bytes) (hexutil.Bytes, error) {
    // Look up the wallet containing the requested signer
    account := accounts.Account{Address: addr}

    wallet, err := s.b.AccountManager().Find(account)
    if err != nil {
        return nil, err
    }
    // Sign the requested hash with the wallet
    signature, err := wallet.SignText(account, data)
    if err == nil {
        signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
    }
    return signature, err
}

// SignTransactionResult represents a RLP encoded signed transaction.
type SignTransactionResult struct {
    Raw hexutil.Bytes      `json:"raw"`
    Tx  *types.Transaction `json:"tx"`
}

// SignTransaction will sign the given transaction with the from account.
// The node needs to have the private key of the account corresponding with
// the given from address and it needs to be unlocked.
func (s *PublicTransactionPoolAPI) SignTransaction(ctx context.Context, args SendTxArgs) (*SignTransactionResult, error) {
    if args.Gas == nil {
        return nil, fmt.Errorf("gas not specified")
    }
    if args.GasPrice == nil {
        return nil, fmt.Errorf("gasPrice not specified")
    }
    if args.Nonce == nil {
        return nil, fmt.Errorf("nonce not specified")
    }
    if err := args.setDefaults(ctx, s.b); err != nil {
        return nil, err
    }
    // Before actually sign the transaction, ensure the transaction fee is reasonable.
    if err := checkTxFee(args.GasPrice.ToInt(), uint64(*args.Gas), s.b.RPCTxFeeCap()); err != nil {
        return nil, err
    }
    tx, err := s.sign(args.From, args.toTransaction())
    if err != nil {
        return nil, err
    }
    data, err := rlp.EncodeToBytes(tx)
    if err != nil {
        return nil, err
    }
    return &SignTransactionResult{data, tx}, nil
}

// PendingTransactions returns the transactions that are in the transaction pool
// and have a from address that is one of the accounts this node manages.
func (s *PublicTransactionPoolAPI) PendingTransactions() ([]*RPCTransaction, error) {
    pending, err := s.b.GetPoolTransactions()
    if err != nil {
        return nil, err
    }
    accounts := make(map[common.Address]struct{})
    for _, wallet := range s.b.AccountManager().Wallets() {
        for _, account := range wallet.Accounts() {
            accounts[account.Address] = struct{}{}
        }
    }
    transactions := make([]*RPCTransaction, 0, len(pending))
    for _, tx := range pending {
        var signer types.Signer = types.HomesteadSigner{}
        if tx.Protected() {
            signer = types.NewEIP155Signer(tx.ChainId())
        }
        from, _ := types.Sender(signer, tx)
        if _, exists := accounts[from]; exists {
            transactions = append(transactions, newRPCPendingTransaction(tx))
        }
    }
    return transactions, nil
}

// Resend accepts an existing transaction and a new gas price and limit. It will remove
// the given transaction from the pool and reinsert it with the new gas price and limit.
func (s *PublicTransactionPoolAPI) Resend(ctx context.Context, sendArgs SendTxArgs, gasPrice *hexutil.Big, gasLimit *hexutil.Uint64) (common.Hash, error) {
    if sendArgs.Nonce == nil {
        return common.Hash{}, fmt.Errorf("missing transaction nonce in transaction spec")
    }
    if err := sendArgs.setDefaults(ctx, s.b); err != nil {
        return common.Hash{}, err
    }
    matchTx := sendArgs.toTransaction()

    // Before replacing the old transaction, ensure the _new_ transaction fee is reasonable.
    var price = matchTx.GasPrice()
    if gasPrice != nil {
        price = gasPrice.ToInt()
    }
    var gas = matchTx.Gas()
    if gasLimit != nil {
        gas = uint64(*gasLimit)
    }
    if err := checkTxFee(price, gas, s.b.RPCTxFeeCap()); err != nil {
        return common.Hash{}, err
    }
    // Iterate the pending list for replacement
    pending, err := s.b.GetPoolTransactions()
    if err != nil {
        return common.Hash{}, err
    }

    for _, p := range pending {
        var signer types.Signer = types.HomesteadSigner{}
        if p.Protected() {
            signer = types.NewEIP155Signer(p.ChainId())
        }
        wantSigHash := signer.Hash(matchTx)

        if pFrom, err := types.Sender(signer, p); err == nil && pFrom == sendArgs.From && signer.Hash(p) == wantSigHash {
            // Match. Re-sign and send the transaction.
            if gasPrice != nil && (*big.Int)(gasPrice).Sign() != 0 {
                sendArgs.GasPrice = gasPrice
            }
            if gasLimit != nil && *gasLimit != 0 {
                sendArgs.Gas = gasLimit
            }
            signedTx, err := s.sign(sendArgs.From, sendArgs.toTransaction())
            if err != nil {
                return common.Hash{}, err
            }
            if err = s.b.SendTx(ctx, signedTx); err != nil {
                return common.Hash{}, err
            }
            return signedTx.Hash(), nil
        }
    }

    return common.Hash{}, fmt.Errorf("transaction %#x not found", matchTx.Hash())
}

// PublicDebugAPI is the collection of Ethereum APIs exposed over the public
// debugging endpoint.
type PublicDebugAPI struct {
    b Backend
}

// NewPublicDebugAPI creates a new API definition for the public debug methods
// of the Ethereum service.
func NewPublicDebugAPI(b Backend) *PublicDebugAPI {
    return &PublicDebugAPI{b: b}
}

// GetBlockRlp retrieves the RLP encoded for of a single block.
func (api *PublicDebugAPI) GetBlockRlp(ctx context.Context, number uint64) (string, error) {
    block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number))
    if block == nil {
        return "", fmt.Errorf("block #%d not found", number)
    }
    encoded, err := rlp.EncodeToBytes(block)
    if err != nil {
        return "", err
    }
    return fmt.Sprintf("%x", encoded), nil
}

// TestSignCliqueBlock fetches the given block number, and attempts to sign it as a clique header with the
// given address, returning the address of the recovered signature
//
// This is a temporary method to debug the externalsigner integration,
func (api *PublicDebugAPI) TestSignCliqueBlock(ctx context.Context, address common.Address, number uint64) (common.Address, error) {
    return common.Address{}, errors.New("Clique isn't supported")
}

// PrintBlock retrieves a block and returns its pretty printed form.
func (api *PublicDebugAPI) PrintBlock(ctx context.Context, number uint64) (string, error) {
    block, err := api.b.BlockByNumber(ctx, rpc.BlockNumber(number))
    if err != nil {
        return "", err
    }
    if block == nil {
        return "", fmt.Errorf("block #%d not found", number)
    }
    return spew.Sdump(block), nil
}

// SeedHash retrieves the seed hash of a block.
func (api *PublicDebugAPI) SeedHash(ctx context.Context, number uint64) (string, error) {
    block, err := api.b.BlockByNumber(ctx, rpc.BlockNumber(number))
    if err != nil {
        return "", err
    }
    if block == nil {
        return "", fmt.Errorf("block #%d not found", number)
    }
    return fmt.Sprintf("0x%x", ethash.SeedHash(number)), nil
}

// BlocksTransactionTimes returns the map time => number of transactions
// This data may be used to draw a histogram to calculate a peak TPS of a range of blocks
func (api *PublicDebugAPI) BlocksTransactionTimes(ctx context.Context, untilBlock rpc.BlockNumber, maxBlocks hexutil.Uint64) (map[hexutil.Uint64]hexutil.Uint, error) {

    until, err := api.b.HeaderByNumber(ctx, untilBlock)
    if err != nil {
        return nil, err
    }
    untilN := until.Number.Uint64()
    times := map[hexutil.Uint64]hexutil.Uint{}
    for i := untilN; i >= 1 && i+uint64(maxBlocks) > untilN; i-- {
        b, err := api.b.BlockByNumber(ctx, rpc.BlockNumber(i))
        if err != nil {
            return nil, err
        }
        if b.Transactions.Len() == 0 {
            continue
        }
        times[hexutil.Uint64(b.Time)] += hexutil.Uint(b.Transactions.Len())
    }

    return times, nil
}

// PrivateDebugAPI is the collection of Ethereum APIs exposed over the private
// debugging endpoint.
type PrivateDebugAPI struct {
    b Backend
}

// NewPrivateDebugAPI creates a new API definition for the private debug methods
// of the Ethereum service.
func NewPrivateDebugAPI(b Backend) *PrivateDebugAPI {
    return &PrivateDebugAPI{b: b}
}

// ChaindbProperty returns leveldb properties of the key-value database.
func (api *PrivateDebugAPI) ChaindbProperty(property string) (string, error) {
    if property == "" {
        property = "leveldb.stats"
    } else if !strings.HasPrefix(property, "leveldb.") {
        property = "leveldb." + property
    }
    return api.b.ChainDb().Stat(property)
}

// ChaindbCompact flattens the entire key-value database into a single level,
// removing all unused slots and merging all keys.
func (api *PrivateDebugAPI) ChaindbCompact() error {
    for b := byte(0); b < 255; b++ {
        log.Info("Compacting chain database", "range", fmt.Sprintf("0x%0.2X-0x%0.2X", b, b+1))
        if err := api.b.ChainDb().Compact([]byte{b}, []byte{b + 1}); err != nil {
            log.Error("Database compaction failed", "err", err)
            return err
        }
    }
    return nil
}

// SetHead rewinds the head of the blockchain to a previous block.
func (api *PrivateDebugAPI) SetHead(number hexutil.Uint64) error {
    return errors.New("lachesis cannot rewind blocks due to the BFT algorithm")
}

// PublicNetAPI offers network related RPC methods
type PublicNetAPI struct {
    net            *p2p.Server
    networkVersion uint64
}

// NewPublicNetAPI creates a new net API instance.
func NewPublicNetAPI(net *p2p.Server, networkVersion uint64) *PublicNetAPI {
    return &PublicNetAPI{net, networkVersion}
}

// Listening returns an indication if the node is listening for network connections.
func (s *PublicNetAPI) Listening() bool {
    return true // always listening
}

// PeerCount returns the number of connected peers
func (s *PublicNetAPI) PeerCount() hexutil.Uint {
    return hexutil.Uint(s.net.PeerCount())
}

// Version returns the current ethereum protocol version.
func (s *PublicNetAPI) Version() string {
    return fmt.Sprintf("%d", s.networkVersion)
}

// checkTxFee is an internal function used to check whether the fee of
// the given transaction is _reasonable_(under the cap).
func checkTxFee(gasPrice *big.Int, gas uint64, cap float64) error {
    // Short circuit if there is no cap for transaction fee at all.
    if cap == 0 {
        return nil
    }
    feeEth := new(big.Float).Quo(new(big.Float).SetInt(new(big.Int).Mul(gasPrice, new(big.Int).SetUint64(gas))), new(big.Float).SetInt(big.NewInt(params.Ether)))
    feeFloat, _ := feeEth.Float64()
    if feeFloat > cap {
        return fmt.Errorf("tx fee (%.2f FTM) exceeds the configured cap (%.2f FTM)", feeFloat, cap)
    }
    return nil
}