Use of assert detected. The enclosed code will be removed when compiling to optimised byte code. Open
assert header['width'] % 2 == 0
- Exclude checks
Use of assert detected. The enclosed code will be removed when compiling to optimised byte code. Open
assert header['filesize'] is not None
- Exclude checks
File frms6.py
has 596 lines of code (exceeds 400 allowed). Consider refactoring. Open
import os
import re
import csv
from glob import glob, escape
import typing
FRMS6DataSet
has 22 functions (exceeds 20 allowed). Consider refactoring. Open
class FRMS6DataSet(DataSet):
r"""
Read PNDetector FRMS6 files. FRMS6 data sets consist of multiple .frms6 files and
a .hdr file. The first .frms6 file (matching \*_000.frms6) contains dark frames, which
are subtracted if `enable_offset_correction` is true.
Cyclomatic complexity is too high in method _do_initialize. (9) Open
def _do_initialize(self):
self._filenames = get_filenames(self._path)
self._hdr_info = self._read_hdr_info()
self._headers = [
_read_file_header(path)
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Cyclomatic complexity is too high in method _get_gain_map. (8) Open
def _get_gain_map(self):
if self._gain_map_path is None:
return None
_, ext = os.path.splitext(self._gain_map_path)
if ext.lower() == '.mat':
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Cyclomatic complexity is too high in function _read_dataset_hdr. (8) Open
def _read_dataset_hdr(fname):
if not os.path.exists(fname):
raise DataSetException(
"Could not find .hdr file {}".format(
fname,
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Cyclomatic complexity is too high in function _frms6_read_ranges_tile_block. (6) Open
@numba.njit(inline='always')
def _frms6_read_ranges_tile_block(
slices_arr, fileset_arr, slice_sig_sizes, sig_origins,
inner_indices_start, inner_indices_stop, frame_indices, sig_size,
px_to_bytes, bpp, frame_header_bytes, frame_footer_bytes, file_idxs,
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Function _frms6_read_ranges_tile_block
has 16 arguments (exceeds 8 allowed). Consider refactoring. Open
def _frms6_read_ranges_tile_block(
Function _read_dataset_hdr
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def _read_dataset_hdr(fname):
if not os.path.exists(fname):
raise DataSetException(
"Could not find .hdr file {}".format(
fname,
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function _frms6_read_ranges_tile_block
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def _frms6_read_ranges_tile_block(
slices_arr, fileset_arr, slice_sig_sizes, sig_origins,
inner_indices_start, inner_indices_stop, frame_indices, sig_size,
px_to_bytes, bpp, frame_header_bytes, frame_footer_bytes, file_idxs,
slice_offset, extra, sig_shape,
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function "_decode_frms6" has 8 parameters, which is greater than the 7 authorized. Open
def _decode_frms6(inp, out, idx, native_dtype, rr, origin, shape, ds_shape):
- Read upRead up
- Exclude checks
A long parameter list can indicate that a new structure should be created to wrap the numerous parameters or that the function is doing too many things.
Noncompliant Code Example
With a maximum number of 4 parameters:
def do_something(param1, param2, param3, param4, param5): ...
Compliant Solution
def do_something(param1, param2, param3, param4): ...
Function "_frms6_read_ranges_tile_block" has 16 parameters, which is greater than the 7 authorized. Open
slices_arr, fileset_arr, slice_sig_sizes, sig_origins,
inner_indices_start, inner_indices_stop, frame_indices, sig_size,
px_to_bytes, bpp, frame_header_bytes, frame_footer_bytes, file_idxs,
slice_offset, extra, sig_shape,
- Read upRead up
- Exclude checks
A long parameter list can indicate that a new structure should be created to wrap the numerous parameters or that the function is doing too many things.
Noncompliant Code Example
With a maximum number of 4 parameters:
def do_something(param1, param2, param3, param4, param5): ...
Compliant Solution
def do_something(param1, param2, param3, param4): ...
Method "__init__" has 9 parameters, which is greater than the 7 authorized. Open
def __init__(self, path, enable_offset_correction=True, gain_map_path=None, dest_dtype=None,
nav_shape=None, sig_shape=None, sync_offset=0, io_backend=None):
- Read upRead up
- Exclude checks
A long parameter list can indicate that a new structure should be created to wrap the numerous parameters or that the function is doing too many things.
Noncompliant Code Example
With a maximum number of 4 parameters:
def do_something(param1, param2, param3, param4, param5): ...
Compliant Solution
def do_something(param1, param2, param3, param4): ...
Take the required action to fix the issue indicated by this "FIXME" comment. Open
# FIXME: should we scale the data by the binning factor?
- Read upRead up
- Exclude checks
FIXME
tags are commonly used to mark places where a bug is suspected, but which the developer wants to deal with later.
Sometimes the developer will not have the time or will simply forget to get back to that tag.
This rule is meant to track those tags and to ensure that they do not go unnoticed.
Noncompliant Code Example
def divide(numerator, denominator): return numerator / denominator # FIXME denominator value might be 0
See
- MITRE, CWE-546 - Suspicious Comment
Take the required action to fix the issue indicated by this "FIXME" comment. Open
# FIXME: are the dimensions the right way aroud? is there a sample file with a non-square
- Read upRead up
- Exclude checks
FIXME
tags are commonly used to mark places where a bug is suspected, but which the developer wants to deal with later.
Sometimes the developer will not have the time or will simply forget to get back to that tag.
This rule is meant to track those tags and to ensure that they do not go unnoticed.
Noncompliant Code Example
def divide(numerator, denominator): return numerator / denominator # FIXME denominator value might be 0
See
- MITRE, CWE-546 - Suspicious Comment