Use of assert detected. The enclosed code will be removed when compiling to optimised byte code. Open
assert self._meta is not None
- Exclude checks
Use of assert detected. The enclosed code will be removed when compiling to optimised byte code. Open
assert len(partition_slice.shape.nav) == 1
- Exclude checks
Use of assert detected. The enclosed code will be removed when compiling to optimised byte code. Open
assert np.min(triple.indptr) >= 0
- Exclude checks
Use of assert detected. The enclosed code will be removed when compiling to optimised byte code. Open
assert len(tiling_scheme) == 1
- Exclude checks
Use of assert detected. The enclosed code will be removed when compiling to optimised byte code. Open
assert self._meta is not None
- Exclude checks
Use of assert detected. The enclosed code will be removed when compiling to optimised byte code. Open
assert conf is not None
- Exclude checks
Use of assert detected. The enclosed code will be removed when compiling to optimised byte code. Open
assert len(tiling_scheme) == 1
- Exclude checks
Use of assert detected. The enclosed code will be removed when compiling to optimised byte code. Open
assert np.max(triple.indices) < prod(sig_shape)
- Exclude checks
Use of assert detected. The enclosed code will be removed when compiling to optimised byte code. Open
assert array_backend == SCIPY_CSR or array_backend is None
- Exclude checks
Use of assert detected. The enclosed code will be removed when compiling to optimised byte code. Open
assert conf is not None
- Exclude checks
Use of assert detected. The enclosed code will be removed when compiling to optimised byte code. Open
assert self._meta is not None
- Exclude checks
Use of assert detected. The enclosed code will be removed when compiling to optimised byte code. Open
assert self._meta is not None
- Exclude checks
Use of assert detected. The enclosed code will be removed when compiling to optimised byte code. Open
assert np.min(triple.indices) >= 0
- Exclude checks
Use of assert detected. The enclosed code will be removed when compiling to optimised byte code. Open
assert np.max(triple.indptr) == len(triple.indices)
- Exclude checks
File raw_csr.py
has 511 lines of code (exceeds 400 allowed). Consider refactoring. Open
import typing
import os
import scipy.sparse
import numpy as np
Cyclomatic complexity is too high in function check. (7) Open
def check(descriptor: CSRDescriptor, nav_shape, sig_shape, debug=False):
triple = get_triple(descriptor)
if triple.indices.shape != triple.data.shape:
raise RuntimeError('Shape mismatch between data and indices.')
if debug:
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Cyclomatic complexity is too high in function read_tiles_with_roi. (7) Open
def read_tiles_with_roi(
triple: CSRTriple,
partition_slice: Slice,
sync_offset: int,
tiling_scheme: TilingScheme,
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Cyclomatic complexity is too high in method detect_params. (7) Open
@classmethod
def detect_params(cls, path: str, executor: "JobExecutor"):
try:
_, extension = os.path.splitext(path)
has_extension = extension.lstrip('.') in cls.get_supported_extensions()
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Cyclomatic complexity is too high in method initialize. (6) Open
def initialize(self, executor: "JobExecutor") -> "DataSet":
self._conf = conf = executor.run_function(load_toml, self._path)
assert conf is not None
if conf['params']['filetype'].lower() != 'raw_csr':
raise ValueError(f"Filetype is not CSR, found {conf['params']['filetype']}")
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Function read_tiles_with_roi
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def read_tiles_with_roi(
triple: CSRTriple,
partition_slice: Slice,
sync_offset: int,
tiling_scheme: TilingScheme,
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function initialize
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def initialize(self, executor: "JobExecutor") -> "DataSet":
self._conf = conf = executor.run_function(load_toml, self._path)
assert conf is not None
if conf['params']['filetype'].lower() != 'raw_csr':
raise ValueError(f"Filetype is not CSR, found {conf['params']['filetype']}")
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function detect_params
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def detect_params(cls, path: str, executor: "JobExecutor"):
try:
_, extension = os.path.splitext(path)
has_extension = extension.lstrip('.') in cls.get_supported_extensions()
under_size_lim = executor.run_function(cls._get_filesize, path) < 2**20 # 1 MB
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"