Showing 18,390 of 18,390 total issues
Similar blocks of code found in 4 locations. Consider refactoring. Open
useEffect(() => {
const url = `/${apiUrl}/${providerId}`;
http.get(url)
.then((response) => {
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 85.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 4 locations. Consider refactoring. Open
useEffect(() => {
const url = `/${apiUrl}/${providerId}`;
http.get(url)
.then((response) => {
setCardData({
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 85.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 4 locations. Consider refactoring. Open
useEffect(() => {
const url = `/${apiUrl}/${providerId}`;
http.get(url)
.then((response) => {
setCardData({
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 85.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
cy.get('#dropdown-custom-2').click().then(() => {
cy.get('.scrollable-options').then((list) => {
cy.get(list.children()[0]).click();
});
});
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 85.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
cy.get('#dropdown-custom-2').click().then(() => {
cy.get('.scrollable-options').then((list) => {
cy.get(list.children()[1]).click();
});
});
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 85.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Cyclomatic complexity for dialog_get_form_vars is too high. [18/11] Open
def dialog_get_form_vars
@record = Dialog.find(@edit[:rec_id])
params.each do |parameter_key, parameter_value|
parameter_key = parameter_key.split("__protected").first if parameter_key.ends_with?("__protected")
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for exp_button is too high. [18/11] Open
def exp_button
@edit = session[:edit]
case params[:pressed]
when "undo", "redo"
@edit[@expkey][:expression] = @edit[@expkey].history.rewind(params[:pressed])
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for perf_util_summary_section is too high. [18/11] Open
def perf_util_summary_section(s)
ss = []
# Fill in the single day data from the timestamp report
ts_rpt = @sb[:ts_rpt]
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for st_edit is too high. [18/11] Open
def st_edit
assert_privileges(params[:id] ? 'catalogitem_edit' : 'catalogitem_new')
# reset the active tree back to :sandt_tree, it was changed temporairly to display automate entry point tree in a popup div
self.x_active_tree = 'sandt_tree'
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for prov_set_show_vars is too high. [18/11] Open
def prov_set_show_vars
@showtype = "main"
@options = @miq_request.get_options # Get the provision options from the request record
@options[:org_controller] = "vm"
if @options[:schedule_time]
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for rbac_field_changed is too high. [18/11] Open
def rbac_field_changed(rec_type)
id = params[:id].split('__').first || 'new' # Get the record id
id = id unless %w[new seq].include?(id)
return unless load_edit("rbac_#{rec_type}_edit__#{id}", "replace_cell__explorer")
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for reconfigure_handle_submit_button is too high. [18/11] Open
def reconfigure_handle_submit_button
options = {:src_ids => params[:objectIds]}
if params[:cb_memory] == 'true' && role_allows?(:feature => 'vm_reconfigure_memory')
options[:vm_memory] = params[:memory_type] == "MB" ? params[:memory] : params[:memory].to_i * 1024
end
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for build_snmp_options is too high. [18/11] Open
def build_snmp_options(subkey, process_variables)
refresh = false
@edit[:new][subkey][:host] = params[:host] if params[:host] # Actions support a single host in this key
@edit[:new][subkey][:host][0] = params[:host_1] if params[:host_1] # Alerts support an array of hosts
@edit[:new][subkey][:host][1] = params[:host_2] if params[:host_2]
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for rbac_group_right_tree is too high. [18/11] Open
def rbac_group_right_tree(selected_nodes)
case @sb[:active_rbac_group_tab]
when 'rbac_customer_tags'
cats = Classification.categories.select do |c|
c.show || !%w[folder_path_blue folder_path_yellow].include?(c.name) && !(c.read_only? || c.entries.empty?)
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for miq_event_edit is too high. [18/11] Open
def miq_event_edit
assert_privileges("miq_policy_event_edit")
case params[:button]
when "cancel"
@edit = nil
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for alert_build_pulldowns is too high. [18/11] Open
def alert_build_pulldowns
@sb[:alert] ||= {}
# :event_types
unless @sb[:alert][:events] # Only create this once
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for label_tag_mapping_edit is too high. [18/11] Open
def label_tag_mapping_edit
assert_privileges("region_edit")
case params[:button]
when "cancel"
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for show_saved_report is too high. [18/11] Open
def show_saved_report(id)
rr = MiqReportResult.for_user(current_user).find(id)
if rr.nil? # Saved report no longer exists
@report = nil
return
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for schedule_edit is too high. [18/11] Open
def schedule_edit
assert_privileges("schedule_edit")
case params[:button]
when "cancel"
@schedule = MiqSchedule.find_by(:id => params[:id])
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for move_cols_left is too high. [18/11] Open
def move_cols_left
if params[:selected_fields].blank? || params[:selected_fields][0] == ""
add_flash(_("No fields were selected to move up"), :error)
elsif display_filter_contains?(params[:selected_fields])
add_flash(_("No fields were moved up"), :error)
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6