Showing 1,311 of 1,311 total issues
Method monitor_servers_as_non_master
has a Cognitive Complexity of 35 (exceeds 11 allowed). Consider refactoring. Open
def monitor_servers_as_non_master
@last_servers = {}
@last_master ||= {}
rec = @last_master[:record]
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method init_from_dialog
has a Cognitive Complexity of 35 (exceeds 11 allowed). Consider refactoring. Open
def init_from_dialog(init_values)
@dialogs[:dialogs].keys.each do |dialog_name|
get_all_fields(dialog_name).each_pair do |field_name, field_values|
next unless init_values[field_name].nil?
next if field_values[:display] == :ignore
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method to_arel
has a Cognitive Complexity of 35 (exceeds 11 allowed). Consider refactoring. Open
def to_arel(exp, tz)
operator = exp.keys.first
field = Field.parse(exp[operator]["field"]) if exp[operator].kind_of?(Hash) && exp[operator]["field"]
arel_attribute = field&.arel_attribute
if exp[operator].kind_of?(Hash) && exp[operator]["value"] && Field.is_field?(exp[operator]["value"])
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Cyclomatic complexity for build_html_rows is too high. [33/11] Open
def build_html_rows(clickable_rows = false)
time_zone = get_time_zone(Time.zone)
html_rows = []
group_counter = 0
row = 0
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for scan_from_queue is too high. [32/11] Open
def scan_from_queue(taskid = nil)
unless taskid.nil?
task = MiqTask.find_by(:id => taskid)
task.state_active if task
end
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for fetch_record_section is too high. [32/11] Open
def fetch_record_section(id, section, sub_sections, columns)
section = section[:name]
result_section = @results[id][section] = {}
rec = find_record(id)
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Method get_network_details
has a Cognitive Complexity of 34 (exceeds 11 allowed). Consider refactoring. Open
def get_network_details
related_vm = vm || source
related_vm_description = (related_vm == vm) ? "VM" : "Template"
if related_vm.nil?
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method allowed_tags
has a Cognitive Complexity of 34 (exceeds 11 allowed). Consider refactoring. Open
def allowed_tags(options = {})
return @tags unless @tags.nil?
region_number = options.delete(:region_number)
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method exp_build_table
has a Cognitive Complexity of 34 (exceeds 11 allowed). Consider refactoring. Open
def exp_build_table(exp, quick_search = false)
exp_table = []
if exp["and"]
exp_table.push("(")
exp["and"].each do |e|
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Cyclomatic complexity for build_hash_filter_expression is too high. [31/11] Open
def build_hash_filter_expression(value, other_value = nil, filter_type = "Base")
check_compliance = sched_action&.dig(:method) == "check_compliance"
filter_resource_type = if check_compliance
if resource_type == "ContainerImage"
"ContainerImageCheckCompliance"
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Method update_authentication
has a Cognitive Complexity of 33 (exceeds 11 allowed). Consider refactoring. Open
def update_authentication(data, options = {})
return if data.blank?
options.reverse_merge!(:save => true)
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method apply_belongsto_filters
has a Cognitive Complexity of 33 (exceeds 11 allowed). Consider refactoring. Open
def self.apply_belongsto_filters(inputs, bfilters)
return [] if inputs.nil?
return inputs if bfilters.empty?
vcmeta_index = bfilters.index_with { |tag| belongsto2object_list(tag) }
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method invoke_actions
has a Cognitive Complexity of 33 (exceeds 11 allowed). Consider refactoring. Open
def self.invoke_actions(apply_policies_to, inputs, succeeded, failed)
deferred = []
results = {}
begin
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method build
has a Cognitive Complexity of 32 (exceeds 11 allowed). Consider refactoring. Open
def self.build(perfs, options)
# options = {
# :trend_col => "max_cpu_usagemhz_rate_average",
# :limit_col => "max_derived_cpu_available",
# :limit_val => 4096,
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Cyclomatic complexity for allowed_tags is too high. [28/11] Open
def allowed_tags(options = {})
return @tags unless @tags.nil?
region_number = options.delete(:region_number)
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for build_document_body is too high. [28/11] Open
def build_document_body
mri = options.mri
tz = mri.get_time_zone(Time.zone.name)
s = @hr
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Method xml_to_hashes
has a Cognitive Complexity of 30 (exceeds 11 allowed). Consider refactoring. Open
def self.xml_to_hashes(xmlNode, findPath, typeName = nil)
el = XmlFind.findElement(findPath, xmlNode.root)
return nil unless MiqXml.isXmlElement?(el)
result = []
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method build_hash_filter_expression
has a Cognitive Complexity of 30 (exceeds 11 allowed). Consider refactoring. Open
def build_hash_filter_expression(value, other_value = nil, filter_type = "Base")
check_compliance = sched_action&.dig(:method) == "check_compliance"
filter_resource_type = if check_compliance
if resource_type == "ContainerImage"
"ContainerImageCheckCompliance"
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Cyclomatic complexity for save_hosts_inventory is too high. [26/11] Open
def save_hosts_inventory(ems, hashes, target = nil)
target = ems if target.nil?
log_header = "EMS: [#{ems.name}], id: [#{ems.id}]"
disconnects = if target == ems
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for import_from_hash is too high. [26/11] Open
def import_from_hash(policy, options = {})
raise _("No Policy to Import") if policy.nil?
pe = policy.delete("MiqPolicyContent") { |_k| raise "No contents for Policy == #{policy.inspect}" }
pc = policy.delete("Condition") || []
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6