distance.go
package eaopt
import (
"fmt"
"math"
)
// A Metric returns the distance between two genomes.
type Metric func(a, b Individual) float64
// A DistanceMemoizer computes and stores Metric calculations.
type DistanceMemoizer struct {
Metric Metric
Distances map[string]map[string]float64
nCalculations int // Total number of calls to Metric for testing purposes
}
// newDistanceMemoizer initializes a DistanceMemoizer.
func newDistanceMemoizer(metric Metric) DistanceMemoizer {
return DistanceMemoizer{
Metric: metric,
Distances: make(map[string]map[string]float64),
}
}
// GetDistance returns the distance between two Individuals based on the
// DistanceMemoizer's Metric field. If the two individuals share the same ID
// then GetDistance returns 0. DistanceMemoizer stores the calculated distances
// so that if GetDistance is called twice with the two same Individuals then
// the second call will return the stored distance instead of recomputing it.
func (dm *DistanceMemoizer) GetDistance(a, b Individual) float64 {
// Check if the two individuals are the same before proceeding
if a.ID == b.ID {
return 0
}
// Create maps if the genomes have never been encountered
if _, ok := dm.Distances[a.ID]; !ok {
dm.Distances[a.ID] = make(map[string]float64)
// Check if the distance between the two genomes has been calculated
} else if dist, ok := dm.Distances[a.ID][b.ID]; ok {
return dist
}
if _, ok := dm.Distances[b.ID]; !ok {
dm.Distances[b.ID] = make(map[string]float64)
}
// Calculate the distance between the genomes and memoize it
var dist = dm.Metric(a, b)
dm.Distances[a.ID][b.ID] = dist
dm.Distances[b.ID][a.ID] = dist
dm.nCalculations++
return dist
}
// calcAvgDistances returns a map that associates the ID of each provided
// Individual with the average distance the Individual has with the rest of the
// Individuals.
func calcAvgDistances(indis Individuals, dm DistanceMemoizer) map[string]float64 {
var avgDistances = make(map[string]float64)
for _, a := range indis {
for _, b := range indis {
avgDistances[a.ID] += dm.GetDistance(a, b)
}
avgDistances[a.ID] /= float64(len(indis) - 1)
}
return avgDistances
}
func rebalanceClusters(clusters []Individuals, dm DistanceMemoizer, minPerCluster uint) error {
// Calculate the number of missing Individuals per cluster for each cluster
// to reach at least minPerCluster Individuals.
var missing = make([]int, len(clusters))
for i, cluster := range clusters {
// Check that the cluster has at least one Individual
if len(cluster) == 0 {
return fmt.Errorf("cluster %d has 0 individuals", i)
}
// Calculate the number of missing Individual in the cluster to reach minPerCluster
missing[i] = int(minPerCluster) - len(cluster)
}
// Check if there are enough Individuals to rebalance the clusters.
if sumInts(missing) >= 0 {
return fmt.Errorf("missing %d individuals to be able to rebalance the clusters",
sumInts(missing))
}
// Loop through the clusters that are missing Individuals
for i, cluster := range clusters {
// Check if the cluster is missing Individuals
if missing[i] <= 0 {
continue
}
// Assign new Individuals to the cluster while it is missing some
for missing[i] > 0 {
// Determine the medoid
cluster.SortByDistanceToMedoid(dm)
var medoid = cluster[0]
// Go through the Individuals of the other clusters and find the one
// closest to the computed medoid
var (
cci int // Closest cluster index
cii int // Closest Individual index
minDist = math.Inf(1)
)
for j := range clusters {
// Check that the cluster has Individuals to spare
if i == j || missing[j] >= 0 {
continue
}
// Find the closest Individual to the medoid inside the cluster
for k, indi := range clusters[j] {
var dist = dm.GetDistance(indi, medoid)
if dist < minDist {
cci = j
cii = k
minDist = dist
}
}
}
// Add the closest Individual to the cluster
clusters[i] = append(clusters[i], clusters[cci][cii])
// Remove the closest Individual from the cluster it belonged to
clusters[cci] = append(clusters[cci][:cii], clusters[cci][cii+1:]...)
missing[i]--
}
}
return nil
}