speciation.go
package eaopt
import (
"errors"
"fmt"
"math/rand"
)
// A Speciator partitions a population into n smaller subpopulations. Each
// subpopulation shares the same random number generator inherited from the
// initial population.
type Speciator interface {
Apply(indis Individuals, rng *rand.Rand) ([]Individuals, error)
Validate() error
}
// SpecKMedoids (k-medoid clustering).
type SpecKMedoids struct {
K uint // Number of medoids
MinPerCluster uint
Metric Metric // Dissimimilarity measure
MaxIterations uint
}
// Apply SpecKMedoids.
func (spec SpecKMedoids) Apply(indis Individuals, rng *rand.Rand) ([]Individuals, error) {
// Check there are at least K Individuals
if len(indis) < int(spec.K) {
return nil, fmt.Errorf("SpecKMedoids: have %d individuals and need at least %d",
len(indis), spec.K)
}
var (
species = make([]Individuals, spec.K)
medoids = make(Individuals, spec.K)
dm = newDistanceMemoizer(spec.Metric)
)
// Initialize the clusters with the individuals having the lowest average
// distances with the other individuals
indis.SortByDistanceToMedoid(dm)
copy(medoids, indis[:spec.K])
// Add each medoid to a cluster
for i, medoid := range medoids {
species[i] = append(species[i], medoid)
}
// Keep track of the total distance from the medoid to each of the cluster's
// members, this total will then be used to compare with different cluster
// dispositions
var total float64
// Assign each individual that is not a medoid to the closest initial medoid
for _, indi := range indis[spec.K:] {
var i = indi.IdxOfClosest(medoids, dm)
species[i] = append(species[i], indi)
total += dm.GetDistance(medoids[i], indi)
}
var nIterations uint
for nIterations < spec.MaxIterations {
nIterations++
var (
newSpecies = make([]Individuals, len(species))
newTotal float64
)
// Recompute the new medoid inside each specie
for i, specie := range species {
specie.SortByDistanceToMedoid(dm)
medoids[i] = specie[0]
newSpecies[i] = append(newSpecies[i], specie[0])
}
// Reassign each individual to the closest new medoid
for _, specie := range species {
for _, indi := range specie[1:] {
var i = indi.IdxOfClosest(medoids, dm)
newSpecies[i] = append(newSpecies[i], indi)
newTotal += dm.GetDistance(medoids[i], indi)
}
}
// No more iterations are needed if the new total is worse
if newTotal >= total {
break
}
copy(species, newSpecies)
total = newTotal
}
// Rebalance the species so that their are at least
err := rebalanceClusters(species, dm, spec.MinPerCluster)
if err != nil {
return nil, err
}
return species, nil
}
// Validate SpecKMedoids fields.
func (spec SpecKMedoids) Validate() error {
if spec.K < 2 {
return errors.New("k should be higher than 1")
}
if spec.Metric == nil {
return errors.New("metric field has to be provided")
}
if spec.MaxIterations < 1 {
return errors.New("k should be higher than 0")
}
return nil
}
// SpecFitnessInterval speciates a population based on the fitness of each
// individual where each species contains m = n/k (rounded to the closest upper
// integer) individuals with similar fitnesses. For example, with 4 species, 30
// individuals would be split into 3 groups of 8 individuals and 1 group of 6
// individuals (3*8 + 1*6 = 30). More generally each group is of size
// min(n-i, m) where i is a multiple of m.
type SpecFitnessInterval struct {
K uint // Number of intervals
}
// Apply SpecFitnessInterval.
func (spec SpecFitnessInterval) Apply(indis Individuals, rng *rand.Rand) ([]Individuals, error) {
// Check there are at least K Individuals
if len(indis) < int(spec.K) {
return nil, fmt.Errorf("specFitnessInterval: have %d individuals and need at least %d",
len(indis), spec.K)
}
var (
species = make([]Individuals, spec.K)
n = len(indis)
m = minInt(int(float64(n/int(spec.K))), n)
)
for i := range species {
var a, b = i * m, minInt((i+1)*m, n)
species[i] = indis[a:b]
}
return species, nil
}
// Validate SpecFitnessInterval fields.
func (spec SpecFitnessInterval) Validate() error {
if spec.K < 2 {
return errors.New("k should be higher than 1")
}
return nil
}