SebastianCzoch/onesky-go

View on GitHub
Godeps/_workspace/src/github.com/stretchr/testify/assert/assertions.go

Summary

Maintainability
C
1 day
Test Coverage
package assert

import (
    "bufio"
    "bytes"
    "fmt"
    "math"
    "reflect"
    "regexp"
    "runtime"
    "strings"
    "time"
    "unicode"
    "unicode/utf8"
)

// TestingT is an interface wrapper around *testing.T
type TestingT interface {
    Errorf(format string, args ...interface{})
}

// Comparison a custom function that returns true on success and false on failure
type Comparison func() (success bool)

/*
    Helper functions
*/

// ObjectsAreEqual determines if two objects are considered equal.
//
// This function does no assertion of any kind.
func ObjectsAreEqual(expected, actual interface{}) bool {

    if expected == nil || actual == nil {
        return expected == actual
    }

    if reflect.DeepEqual(expected, actual) {
        return true
    }

    return false

}

// ObjectsAreEqualValues gets whether two objects are equal, or if their
// values are equal.
func ObjectsAreEqualValues(expected, actual interface{}) bool {
    if ObjectsAreEqual(expected, actual) {
        return true
    }

    actualType := reflect.TypeOf(actual)
    expectedValue := reflect.ValueOf(expected)
    if expectedValue.Type().ConvertibleTo(actualType) {
        // Attempt comparison after type conversion
        if reflect.DeepEqual(actual, expectedValue.Convert(actualType).Interface()) {
            return true
        }
    }

    return false
}

/* CallerInfo is necessary because the assert functions use the testing object
internally, causing it to print the file:line of the assert method, rather than where
the problem actually occured in calling code.*/

// CallerInfo returns an array of strings containing the file and line number
// of each stack frame leading from the current test to the assert call that
// failed.
func CallerInfo() []string {

    pc := uintptr(0)
    file := ""
    line := 0
    ok := false
    name := ""

    callers := []string{}
    for i := 0; ; i++ {
        pc, file, line, ok = runtime.Caller(i)
        if !ok {
            return nil
        }

        // This is a huge edge case, but it will panic if this is the case, see #180
        if file == "<autogenerated>" {
            break
        }

        parts := strings.Split(file, "/")
        dir := parts[len(parts)-2]
        file = parts[len(parts)-1]
        if (dir != "assert" && dir != "mock" && dir != "require") || file == "mock_test.go" {
            callers = append(callers, fmt.Sprintf("%s:%d", file, line))
        }

        f := runtime.FuncForPC(pc)
        if f == nil {
            break
        }
        name = f.Name()
        // Drop the package
        segments := strings.Split(name, ".")
        name = segments[len(segments)-1]
        if isTest(name, "Test") ||
            isTest(name, "Benchmark") ||
            isTest(name, "Example") {
            break
        }
    }

    return callers
}

// Stolen from the `go test` tool.
// isTest tells whether name looks like a test (or benchmark, according to prefix).
// It is a Test (say) if there is a character after Test that is not a lower-case letter.
// We don't want TesticularCancer.
func isTest(name, prefix string) bool {
    if !strings.HasPrefix(name, prefix) {
        return false
    }
    if len(name) == len(prefix) { // "Test" is ok
        return true
    }
    rune, _ := utf8.DecodeRuneInString(name[len(prefix):])
    return !unicode.IsLower(rune)
}

// getWhitespaceString returns a string that is long enough to overwrite the default
// output from the go testing framework.
func getWhitespaceString() string {

    _, file, line, ok := runtime.Caller(1)
    if !ok {
        return ""
    }
    parts := strings.Split(file, "/")
    file = parts[len(parts)-1]

    return strings.Repeat(" ", len(fmt.Sprintf("%s:%d:      ", file, line)))

}

func messageFromMsgAndArgs(msgAndArgs ...interface{}) string {
    if len(msgAndArgs) == 0 || msgAndArgs == nil {
        return ""
    }
    if len(msgAndArgs) == 1 {
        return msgAndArgs[0].(string)
    }
    if len(msgAndArgs) > 1 {
        return fmt.Sprintf(msgAndArgs[0].(string), msgAndArgs[1:]...)
    }
    return ""
}

// Indents all lines of the message by appending a number of tabs to each line, in an output format compatible with Go's
// test printing (see inner comment for specifics)
func indentMessageLines(message string, tabs int) string {
    outBuf := new(bytes.Buffer)

    for i, scanner := 0, bufio.NewScanner(strings.NewReader(message)); scanner.Scan(); i++ {
        if i != 0 {
            outBuf.WriteRune('\n')
        }
        for ii := 0; ii < tabs; ii++ {
            outBuf.WriteRune('\t')
            // Bizarrely, all lines except the first need one fewer tabs prepended, so deliberately advance the counter
            // by 1 prematurely.
            if ii == 0 && i > 0 {
                ii++
            }
        }
        outBuf.WriteString(scanner.Text())
    }

    return outBuf.String()
}

// Fail reports a failure through
func Fail(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool {

    message := messageFromMsgAndArgs(msgAndArgs...)

    errorTrace := strings.Join(CallerInfo(), "\n\r\t\t\t")
    if len(message) > 0 {
        t.Errorf("\r%s\r\tError Trace:\t%s\n"+
            "\r\tError:%s\n"+
            "\r\tMessages:\t%s\n\r",
            getWhitespaceString(),
            errorTrace,
            indentMessageLines(failureMessage, 2),
            message)
    } else {
        t.Errorf("\r%s\r\tError Trace:\t%s\n"+
            "\r\tError:%s\n\r",
            getWhitespaceString(),
            errorTrace,
            indentMessageLines(failureMessage, 2))
    }

    return false
}

// Implements asserts that an object is implemented by the specified interface.
//
//    assert.Implements(t, (*MyInterface)(nil), new(MyObject), "MyObject")
func Implements(t TestingT, interfaceObject interface{}, object interface{}, msgAndArgs ...interface{}) bool {

    interfaceType := reflect.TypeOf(interfaceObject).Elem()

    if !reflect.TypeOf(object).Implements(interfaceType) {
        return Fail(t, fmt.Sprintf("Object must implement %v", interfaceType), msgAndArgs...)
    }

    return true

}

// IsType asserts that the specified objects are of the same type.
func IsType(t TestingT, expectedType interface{}, object interface{}, msgAndArgs ...interface{}) bool {

    if !ObjectsAreEqual(reflect.TypeOf(object), reflect.TypeOf(expectedType)) {
        return Fail(t, fmt.Sprintf("Object expected to be of type %v, but was %v", reflect.TypeOf(expectedType), reflect.TypeOf(object)), msgAndArgs...)
    }

    return true
}

// Equal asserts that two objects are equal.
//
//    assert.Equal(t, 123, 123, "123 and 123 should be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func Equal(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {

    if !ObjectsAreEqual(expected, actual) {
        return Fail(t, fmt.Sprintf("Not equal: %#v (expected)\n"+
            "        != %#v (actual)", expected, actual), msgAndArgs...)
    }

    return true

}

// EqualValues asserts that two objects are equal or convertable to the same types
// and equal.
//
//    assert.EqualValues(t, uint32(123), int32(123), "123 and 123 should be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func EqualValues(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {

    if !ObjectsAreEqualValues(expected, actual) {
        return Fail(t, fmt.Sprintf("Not equal: %#v (expected)\n"+
            "        != %#v (actual)", expected, actual), msgAndArgs...)
    }

    return true

}

// Exactly asserts that two objects are equal is value and type.
//
//    assert.Exactly(t, int32(123), int64(123), "123 and 123 should NOT be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func Exactly(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {

    aType := reflect.TypeOf(expected)
    bType := reflect.TypeOf(actual)

    if aType != bType {
        return Fail(t, "Types expected to match exactly", "%v != %v", aType, bType)
    }

    return Equal(t, expected, actual, msgAndArgs...)

}

// NotNil asserts that the specified object is not nil.
//
//    assert.NotNil(t, err, "err should be something")
//
// Returns whether the assertion was successful (true) or not (false).
func NotNil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {

    success := true

    if object == nil {
        success = false
    } else {
        value := reflect.ValueOf(object)
        kind := value.Kind()
        if kind >= reflect.Chan && kind <= reflect.Slice && value.IsNil() {
            success = false
        }
    }

    if !success {
        Fail(t, "Expected value not to be nil.", msgAndArgs...)
    }

    return success
}

// isNil checks if a specified object is nil or not, without Failing.
func isNil(object interface{}) bool {
    if object == nil {
        return true
    }

    value := reflect.ValueOf(object)
    kind := value.Kind()
    if kind >= reflect.Chan && kind <= reflect.Slice && value.IsNil() {
        return true
    }

    return false
}

// Nil asserts that the specified object is nil.
//
//    assert.Nil(t, err, "err should be nothing")
//
// Returns whether the assertion was successful (true) or not (false).
func Nil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
    if isNil(object) {
        return true
    }
    return Fail(t, fmt.Sprintf("Expected nil, but got: %#v", object), msgAndArgs...)
}

var zeros = []interface{}{
    int(0),
    int8(0),
    int16(0),
    int32(0),
    int64(0),
    uint(0),
    uint8(0),
    uint16(0),
    uint32(0),
    uint64(0),
    float32(0),
    float64(0),
}

// isEmpty gets whether the specified object is considered empty or not.
func isEmpty(object interface{}) bool {

    if object == nil {
        return true
    } else if object == "" {
        return true
    } else if object == false {
        return true
    }

    for _, v := range zeros {
        if object == v {
            return true
        }
    }

    objValue := reflect.ValueOf(object)

    switch objValue.Kind() {
    case reflect.Map:
        fallthrough
    case reflect.Slice, reflect.Chan:
        {
            return (objValue.Len() == 0)
        }
    case reflect.Ptr:
        {
            switch object.(type) {
            case *time.Time:
                return object.(*time.Time).IsZero()
            default:
                return false
            }
        }
    }
    return false
}

// Empty asserts that the specified object is empty.  I.e. nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// assert.Empty(t, obj)
//
// Returns whether the assertion was successful (true) or not (false).
func Empty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {

    pass := isEmpty(object)
    if !pass {
        Fail(t, fmt.Sprintf("Should be empty, but was %v", object), msgAndArgs...)
    }

    return pass

}

// NotEmpty asserts that the specified object is NOT empty.  I.e. not nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// if assert.NotEmpty(t, obj) {
//   assert.Equal(t, "two", obj[1])
// }
//
// Returns whether the assertion was successful (true) or not (false).
func NotEmpty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {

    pass := !isEmpty(object)
    if !pass {
        Fail(t, fmt.Sprintf("Should NOT be empty, but was %v", object), msgAndArgs...)
    }

    return pass

}

// getLen try to get length of object.
// return (false, 0) if impossible.
func getLen(x interface{}) (ok bool, length int) {
    v := reflect.ValueOf(x)
    defer func() {
        if e := recover(); e != nil {
            ok = false
        }
    }()
    return true, v.Len()
}

// Len asserts that the specified object has specific length.
// Len also fails if the object has a type that len() not accept.
//
//    assert.Len(t, mySlice, 3, "The size of slice is not 3")
//
// Returns whether the assertion was successful (true) or not (false).
func Len(t TestingT, object interface{}, length int, msgAndArgs ...interface{}) bool {
    ok, l := getLen(object)
    if !ok {
        return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", object), msgAndArgs...)
    }

    if l != length {
        return Fail(t, fmt.Sprintf("\"%s\" should have %d item(s), but has %d", object, length, l), msgAndArgs...)
    }
    return true
}

// True asserts that the specified value is true.
//
//    assert.True(t, myBool, "myBool should be true")
//
// Returns whether the assertion was successful (true) or not (false).
func True(t TestingT, value bool, msgAndArgs ...interface{}) bool {

    if value != true {
        return Fail(t, "Should be true", msgAndArgs...)
    }

    return true

}

// False asserts that the specified value is true.
//
//    assert.False(t, myBool, "myBool should be false")
//
// Returns whether the assertion was successful (true) or not (false).
func False(t TestingT, value bool, msgAndArgs ...interface{}) bool {

    if value != false {
        return Fail(t, "Should be false", msgAndArgs...)
    }

    return true

}

// NotEqual asserts that the specified values are NOT equal.
//
//    assert.NotEqual(t, obj1, obj2, "two objects shouldn't be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func NotEqual(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {

    if ObjectsAreEqual(expected, actual) {
        return Fail(t, "Should not be equal", msgAndArgs...)
    }

    return true

}

// containsElement try loop over the list check if the list includes the element.
// return (false, false) if impossible.
// return (true, false) if element was not found.
// return (true, true) if element was found.
func includeElement(list interface{}, element interface{}) (ok, found bool) {

    listValue := reflect.ValueOf(list)
    elementValue := reflect.ValueOf(element)
    defer func() {
        if e := recover(); e != nil {
            ok = false
            found = false
        }
    }()

    if reflect.TypeOf(list).Kind() == reflect.String {
        return true, strings.Contains(listValue.String(), elementValue.String())
    }

    for i := 0; i < listValue.Len(); i++ {
        if ObjectsAreEqual(listValue.Index(i).Interface(), element) {
            return true, true
        }
    }
    return true, false

}

// Contains asserts that the specified string or list(array, slice...) contains the
// specified substring or element.
//
//    assert.Contains(t, "Hello World", "World", "But 'Hello World' does contain 'World'")
//    assert.Contains(t, ["Hello", "World"], "World", "But ["Hello", "World"] does contain 'World'")
//
// Returns whether the assertion was successful (true) or not (false).
func Contains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {

    ok, found := includeElement(s, contains)
    if !ok {
        return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", s), msgAndArgs...)
    }
    if !found {
        return Fail(t, fmt.Sprintf("\"%s\" does not contain \"%s\"", s, contains), msgAndArgs...)
    }

    return true

}

// NotContains asserts that the specified string or list(array, slice...) does NOT contain the
// specified substring or element.
//
//    assert.NotContains(t, "Hello World", "Earth", "But 'Hello World' does NOT contain 'Earth'")
//    assert.NotContains(t, ["Hello", "World"], "Earth", "But ['Hello', 'World'] does NOT contain 'Earth'")
//
// Returns whether the assertion was successful (true) or not (false).
func NotContains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {

    ok, found := includeElement(s, contains)
    if !ok {
        return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", s), msgAndArgs...)
    }
    if found {
        return Fail(t, fmt.Sprintf("\"%s\" should not contain \"%s\"", s, contains), msgAndArgs...)
    }

    return true

}

// Condition uses a Comparison to assert a complex condition.
func Condition(t TestingT, comp Comparison, msgAndArgs ...interface{}) bool {
    result := comp()
    if !result {
        Fail(t, "Condition failed!", msgAndArgs...)
    }
    return result
}

// PanicTestFunc defines a func that should be passed to the assert.Panics and assert.NotPanics
// methods, and represents a simple func that takes no arguments, and returns nothing.
type PanicTestFunc func()

// didPanic returns true if the function passed to it panics. Otherwise, it returns false.
func didPanic(f PanicTestFunc) (bool, interface{}) {

    didPanic := false
    var message interface{}
    func() {

        defer func() {
            if message = recover(); message != nil {
                didPanic = true
            }
        }()

        // call the target function
        f()

    }()

    return didPanic, message

}

// Panics asserts that the code inside the specified PanicTestFunc panics.
//
//   assert.Panics(t, func(){
//     GoCrazy()
//   }, "Calling GoCrazy() should panic")
//
// Returns whether the assertion was successful (true) or not (false).
func Panics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {

    if funcDidPanic, panicValue := didPanic(f); !funcDidPanic {
        return Fail(t, fmt.Sprintf("func %#v should panic\n\r\tPanic value:\t%v", f, panicValue), msgAndArgs...)
    }

    return true
}

// NotPanics asserts that the code inside the specified PanicTestFunc does NOT panic.
//
//   assert.NotPanics(t, func(){
//     RemainCalm()
//   }, "Calling RemainCalm() should NOT panic")
//
// Returns whether the assertion was successful (true) or not (false).
func NotPanics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {

    if funcDidPanic, panicValue := didPanic(f); funcDidPanic {
        return Fail(t, fmt.Sprintf("func %#v should not panic\n\r\tPanic value:\t%v", f, panicValue), msgAndArgs...)
    }

    return true
}

// WithinDuration asserts that the two times are within duration delta of each other.
//
//   assert.WithinDuration(t, time.Now(), time.Now(), 10*time.Second, "The difference should not be more than 10s")
//
// Returns whether the assertion was successful (true) or not (false).
func WithinDuration(t TestingT, expected, actual time.Time, delta time.Duration, msgAndArgs ...interface{}) bool {

    dt := expected.Sub(actual)
    if dt < -delta || dt > delta {
        return Fail(t, fmt.Sprintf("Max difference between %v and %v allowed is %v, but difference was %v", expected, actual, delta, dt), msgAndArgs...)
    }

    return true
}

func toFloat(x interface{}) (float64, bool) {
    var xf float64
    xok := true

    switch xn := x.(type) {
    case uint8:
        xf = float64(xn)
    case uint16:
        xf = float64(xn)
    case uint32:
        xf = float64(xn)
    case uint64:
        xf = float64(xn)
    case int:
        xf = float64(xn)
    case int8:
        xf = float64(xn)
    case int16:
        xf = float64(xn)
    case int32:
        xf = float64(xn)
    case int64:
        xf = float64(xn)
    case float32:
        xf = float64(xn)
    case float64:
        xf = float64(xn)
    default:
        xok = false
    }

    return xf, xok
}

// InDelta asserts that the two numerals are within delta of each other.
//
//      assert.InDelta(t, math.Pi, (22 / 7.0), 0.01)
//
// Returns whether the assertion was successful (true) or not (false).
func InDelta(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {

    af, aok := toFloat(expected)
    bf, bok := toFloat(actual)

    if !aok || !bok {
        return Fail(t, fmt.Sprintf("Parameters must be numerical"), msgAndArgs...)
    }

    if math.IsNaN(af) {
        return Fail(t, fmt.Sprintf("Actual must not be NaN"), msgAndArgs...)
    }

    if math.IsNaN(bf) {
        return Fail(t, fmt.Sprintf("Expected %v with delta %v, but was NaN", expected, delta), msgAndArgs...)
    }

    dt := af - bf
    if dt < -delta || dt > delta {
        return Fail(t, fmt.Sprintf("Max difference between %v and %v allowed is %v, but difference was %v", expected, actual, delta, dt), msgAndArgs...)
    }

    return true
}

// InDeltaSlice is the same as InDelta, except it compares two slices.
func InDeltaSlice(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
    if expected == nil || actual == nil ||
        reflect.TypeOf(actual).Kind() != reflect.Slice ||
        reflect.TypeOf(expected).Kind() != reflect.Slice {
        return Fail(t, fmt.Sprintf("Parameters must be slice"), msgAndArgs...)
    }

    actualSlice := reflect.ValueOf(actual)
    expectedSlice := reflect.ValueOf(expected)

    for i := 0; i < actualSlice.Len(); i++ {
        result := InDelta(t, actualSlice.Index(i).Interface(), expectedSlice.Index(i).Interface(), delta)
        if !result {
            return result
        }
    }

    return true
}

// min(|expected|, |actual|) * epsilon
func calcEpsilonDelta(expected, actual interface{}, epsilon float64) float64 {
    af, aok := toFloat(expected)
    bf, bok := toFloat(actual)

    if !aok || !bok {
        // invalid input
        return 0
    }

    if af < 0 {
        af = -af
    }
    if bf < 0 {
        bf = -bf
    }
    var delta float64
    if af < bf {
        delta = af * epsilon
    } else {
        delta = bf * epsilon
    }
    return delta
}

// InEpsilon asserts that expected and actual have a relative error less than epsilon
//
// Returns whether the assertion was successful (true) or not (false).
func InEpsilon(t TestingT, expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
    delta := calcEpsilonDelta(expected, actual, epsilon)

    return InDelta(t, expected, actual, delta, msgAndArgs...)
}

// InEpsilonSlice is the same as InEpsilon, except it compares two slices.
func InEpsilonSlice(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
    if expected == nil || actual == nil ||
        reflect.TypeOf(actual).Kind() != reflect.Slice ||
        reflect.TypeOf(expected).Kind() != reflect.Slice {
        return Fail(t, fmt.Sprintf("Parameters must be slice"), msgAndArgs...)
    }

    actualSlice := reflect.ValueOf(actual)
    expectedSlice := reflect.ValueOf(expected)

    for i := 0; i < actualSlice.Len(); i++ {
        result := InEpsilon(t, actualSlice.Index(i).Interface(), expectedSlice.Index(i).Interface(), delta)
        if !result {
            return result
        }
    }

    return true
}

/*
    Errors
*/

// NoError asserts that a function returned no error (i.e. `nil`).
//
//   actualObj, err := SomeFunction()
//   if assert.NoError(t, err) {
//       assert.Equal(t, actualObj, expectedObj)
//   }
//
// Returns whether the assertion was successful (true) or not (false).
func NoError(t TestingT, err error, msgAndArgs ...interface{}) bool {
    if isNil(err) {
        return true
    }

    return Fail(t, fmt.Sprintf("No error is expected but got %v", err), msgAndArgs...)
}

// Error asserts that a function returned an error (i.e. not `nil`).
//
//   actualObj, err := SomeFunction()
//   if assert.Error(t, err, "An error was expected") {
//       assert.Equal(t, err, expectedError)
//   }
//
// Returns whether the assertion was successful (true) or not (false).
func Error(t TestingT, err error, msgAndArgs ...interface{}) bool {

    message := messageFromMsgAndArgs(msgAndArgs...)
    return NotNil(t, err, "An error is expected but got nil. %s", message)

}

// EqualError asserts that a function returned an error (i.e. not `nil`)
// and that it is equal to the provided error.
//
//   actualObj, err := SomeFunction()
//   if assert.Error(t, err, "An error was expected") {
//       assert.Equal(t, err, expectedError)
//   }
//
// Returns whether the assertion was successful (true) or not (false).
func EqualError(t TestingT, theError error, errString string, msgAndArgs ...interface{}) bool {

    message := messageFromMsgAndArgs(msgAndArgs...)
    if !NotNil(t, theError, "An error is expected but got nil. %s", message) {
        return false
    }
    s := "An error with value \"%s\" is expected but got \"%s\". %s"
    return Equal(t, theError.Error(), errString,
        s, errString, theError.Error(), message)
}

// matchRegexp return true if a specified regexp matches a string.
func matchRegexp(rx interface{}, str interface{}) bool {

    var r *regexp.Regexp
    if rr, ok := rx.(*regexp.Regexp); ok {
        r = rr
    } else {
        r = regexp.MustCompile(fmt.Sprint(rx))
    }

    return (r.FindStringIndex(fmt.Sprint(str)) != nil)

}

// Regexp asserts that a specified regexp matches a string.
//
//  assert.Regexp(t, regexp.MustCompile("start"), "it's starting")
//  assert.Regexp(t, "start...$", "it's not starting")
//
// Returns whether the assertion was successful (true) or not (false).
func Regexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {

    match := matchRegexp(rx, str)

    if !match {
        Fail(t, fmt.Sprintf("Expect \"%v\" to match \"%v\"", str, rx), msgAndArgs...)
    }

    return match
}

// NotRegexp asserts that a specified regexp does not match a string.
//
//  assert.NotRegexp(t, regexp.MustCompile("starts"), "it's starting")
//  assert.NotRegexp(t, "^start", "it's not starting")
//
// Returns whether the assertion was successful (true) or not (false).
func NotRegexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
    match := matchRegexp(rx, str)

    if match {
        Fail(t, fmt.Sprintf("Expect \"%v\" to NOT match \"%v\"", str, rx), msgAndArgs...)
    }

    return !match

}