Showing 14,752 of 14,752 total issues
Define a constant instead of duplicating this literal "Milligramm" 3 times. Open
"Milligramm",
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "DoubleKennzahlen" 12 times. Open
manageForeign(textField6, rs.getObject("Inzidenz"), getForeignVal("DoubleKennzahlen", rs.getInt("Inzidenz"), DBKernel.delimitL("Wert") + "," + DBKernel.delimitL("Minimum") + "," + DBKernel.delimitL("Maximum")));
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "Woche" 4 times. Open
"Woche",
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "Guetescore" 4 times. Open
componentMap.put("Guetescore", textField18);
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "Morbiditaet" 4 times. Open
componentMap.put("Morbiditaet", textField13);
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "Kaninchen" 3 times. Open
"Kaninchen",
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "INTEGER" 4 times. Open
if (myT.getFieldTypes()[i].equals("INTEGER")) ps.setNull(i+1, java.sql.Types.INTEGER);
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "PBE pro ml" 3 times. Open
"PBE pro ml",
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "KBE pro ml" 3 times. Open
"KBE pro ml",
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "ID_Einheit" 3 times. Open
componentMap.put("ID_Einheit", comboBox8);
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal " INTEGER BEFORE " 10 times. Open
DBKernel.sendRequest("ALTER TABLE " + DBKernel.delimitL("Chargen") + " ADD COLUMN " + DBKernel.delimitL("MHD_day") + " INTEGER BEFORE " + DBKernel.delimitL("Serial"),
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Refactor this method to reduce its Cognitive Complexity from 218 to the 15 allowed. Open
public static List<KnimeTuple> getKnimeTuples(Bfrdb db, Connection conn, KnimeSchema schema,
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.
See
Refactor this method to reduce its Cognitive Complexity from 100 to the 15 allowed. Open
private void getDataTable(Bfrdb db) {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.
See
Add a nested comment explaining why this method is empty, throw an UnsupportedOperationException or complete the implementation. Open
protected void loadInternals(final File internDir, final ExecutionMonitor exec)
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
There are several reasons for a method not to have a method body:
- It is an unintentional omission, and should be fixed to prevent an unexpected behavior in production.
- It is not yet, or never will be, supported. In this case an
UnsupportedOperationException
should be thrown. - The method is an intentionally-blank override. In this case a nested comment should explain the reason for the blank override.
Noncompliant Code Example
public void doSomething() { } public void doSomethingElse() { }
Compliant Solution
@Override public void doSomething() { // Do nothing because of X and Y. } @Override public void doSomethingElse() { throw new UnsupportedOperationException(); }
Exceptions
Default (no-argument) constructors are ignored when there are other constructors in the class, as are empty methods in abstract classes.
public abstract class Animal { void speak() { // default implementation ignored } }
Define a constant instead of duplicating this literal "Messwerte" 3 times. Open
sqlsAll.put("Messwerte", PlausibilityChecker.getPlausibilityRow(null, DBKernel.myDBi.getTable("Messwerte"), 0, "Versuchsbedingungen"));
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Refactor this method to reduce its Cognitive Complexity from 21 to the 15 allowed. Open
private boolean showAndFilterVals(String tablename, LinkedHashMap<String[], LinkedHashSet<String[]>> vals, int idColumn,
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.
See
Don't try to be smarter than the JVM, remove this call to run the garbage collector. Open
System.gc();
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Calling System.gc()
or Runtime.getRuntime().gc()
is a bad idea for a simple reason: there is no way to know exactly what
will be done under the hood by the JVM because the behavior will depend on its vendor, version and options:
- Will the whole application be frozen during the call?
- Is the
-XX:DisableExplicitGC
option activated? - Will the JVM simply ignore the call?
- ...
Like for System.gc()
, there is no reason to manually call runFinalization()
to force the call of finalization methods of
any objects pending finalization.
An application relying on these unpredictable methods is also unpredictable and therefore broken. The task of running the garbage collector and
calling finalize()
methods should be left exclusively to the JVM.
Make "o" transient or serializable. Open
private Object[][] o;
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Fields in a Serializable
class must themselves be either Serializable
or transient
even if the class is
never explicitly serialized or deserialized. For instance, under load, most J2EE application frameworks flush objects to disk, and an allegedly
Serializable
object with non-transient, non-serializable data members could cause program crashes, and open the door to attackers. In
general a Serializable
class is expected to fulfil its contract and not have an unexpected behaviour when an instance is serialized.
This rule raises an issue on non-Serializable
fields, and on collection fields when they are not private
(because they
could be assigned non-Serializable
values externally), and when they are assigned non-Serializable
types within the
class.
Noncompliant Code Example
public class Address { //... } public class Person implements Serializable { private static final long serialVersionUID = 1905122041950251207L; private String name; private Address address; // Noncompliant; Address isn't serializable }
Compliant Solution
public class Address implements Serializable { private static final long serialVersionUID = 2405172041950251807L; } public class Person implements Serializable { private static final long serialVersionUID = 1905122041950251207L; private String name; private Address address; }
Exceptions
The alternative to making all members serializable
or transient
is to implement special methods which take on the
responsibility of properly serializing and de-serializing the object. This rule ignores classes which implement the following methods:
private void writeObject(java.io.ObjectOutputStream out) throws IOException private void readObject(java.io.ObjectInputStream in) throws IOException, ClassNotFoundException;
See
- MITRE, CWE-594 - Saving Unserializable Objects to Disk
- Oracle Java 6, Serializable
- Oracle Java 7, Serializable
Add a nested comment explaining why this method is empty, throw an UnsupportedOperationException or complete the implementation. Open
public MyDblKZSorter() {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
There are several reasons for a method not to have a method body:
- It is an unintentional omission, and should be fixed to prevent an unexpected behavior in production.
- It is not yet, or never will be, supported. In this case an
UnsupportedOperationException
should be thrown. - The method is an intentionally-blank override. In this case a nested comment should explain the reason for the blank override.
Noncompliant Code Example
public void doSomething() { } public void doSomethingElse() { }
Compliant Solution
@Override public void doSomething() { // Do nothing because of X and Y. } @Override public void doSomethingElse() { throw new UnsupportedOperationException(); }
Exceptions
Default (no-argument) constructors are ignored when there are other constructors in the class, as are empty methods in abstract classes.
public abstract class Animal { void speak() { // default implementation ignored } }
Refactor this method to reduce its Cognitive Complexity from 36 to the 15 allowed. Open
void handleSuchfeldChange(final KeyEvent e, final boolean doFilter) {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.