Showing 14,752 of 14,752 total issues
Refactor this method to reduce its Cognitive Complexity from 29 to the 15 allowed. Open
void button11ActionPerformed(ActionEvent e) {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.
See
Define a constant instead of duplicating this literal "Median" 3 times. Open
"Median"
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "Funktion (Zeit)" 3 times. Open
label10.setText("Funktion (Zeit)");
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "Exponent" 5 times. Open
label000.setText("Exponent");
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Refactor this method to reduce its Cognitive Complexity from 22 to the 15 allowed. Open
private Double getDouble(String val) {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.
See
Make "focusBorder" transient or serializable. Open
private Border noFocusBorder, focusBorder;
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Fields in a Serializable
class must themselves be either Serializable
or transient
even if the class is
never explicitly serialized or deserialized. For instance, under load, most J2EE application frameworks flush objects to disk, and an allegedly
Serializable
object with non-transient, non-serializable data members could cause program crashes, and open the door to attackers. In
general a Serializable
class is expected to fulfil its contract and not have an unexpected behaviour when an instance is serialized.
This rule raises an issue on non-Serializable
fields, and on collection fields when they are not private
(because they
could be assigned non-Serializable
values externally), and when they are assigned non-Serializable
types within the
class.
Noncompliant Code Example
public class Address { //... } public class Person implements Serializable { private static final long serialVersionUID = 1905122041950251207L; private String name; private Address address; // Noncompliant; Address isn't serializable }
Compliant Solution
public class Address implements Serializable { private static final long serialVersionUID = 2405172041950251807L; } public class Person implements Serializable { private static final long serialVersionUID = 1905122041950251207L; private String name; private Address address; }
Exceptions
The alternative to making all members serializable
or transient
is to implement special methods which take on the
responsibility of properly serializing and de-serializing the object. This rule ignores classes which implement the following methods:
private void writeObject(java.io.ObjectOutputStream out) throws IOException private void readObject(java.io.ObjectInputStream in) throws IOException, ClassNotFoundException;
See
- MITRE, CWE-594 - Saving Unserializable Objects to Disk
- Oracle Java 6, Serializable
- Oracle Java 7, Serializable
Define a constant instead of duplicating this literal "Krankheit" 4 times. Open
componentMap.put("Krankheit", textField5);
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal " FROM " 3 times. Open
String sql= "SELECT " + DBKernel.delimitL("ID") + " FROM " + DBKernel.delimitL(myT.getTablename());
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "SELECT " 3 times. Open
String sql= "SELECT " + DBKernel.delimitL("ID") + " FROM " + DBKernel.delimitL(myT.getTablename());
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "intraven\u00f6s" 3 times. Open
"intraven\u00f6s",
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "intraperitoneal" 3 times. Open
"intraperitoneal",
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "BioStoffV" 3 times. Open
componentMap.put("BioStoffV", comboBox2);
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "AgensDetail" 3 times. Open
componentMap.put("AgensDetail", textField4);
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Refactor this method to reduce its Cognitive Complexity from 33 to the 15 allowed. Open
private boolean managePs(PreparedStatement ps) throws SQLException {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.
See
Replace this call to "replaceAll()" by a call to the "replace()" method. Open
if (formula != null) formula = formula.replaceAll( "~", "=" ).replaceAll( "\\s", "" );
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
The underlying implementation of String::replaceAll
calls the java.util.regex.Pattern.compile()
method each time it is
called even if the first argument is not a regular expression. This has a significant performance cost and therefore should be used with care.
When String::replaceAll
is used, the first argument should be a real regular expression. If it’s not the case,
String::replace
does exactly the same thing as String::replaceAll
without the performance drawback of the regex.
This rule raises an issue for each String::replaceAll
used with a String
as first parameter which doesn’t contains
special regex character or pattern.
Noncompliant Code Example
String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!"; String changed = init.replaceAll("Bob is", "It's"); // Noncompliant changed = changed.replaceAll("\\.\\.\\.", ";"); // Noncompliant
Compliant Solution
String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!"; String changed = init.replace("Bob is", "It's"); changed = changed.replace("...", ";");
Or, with a regex:
String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!"; String changed = init.replaceAll("\\w*\\sis", "It's"); changed = changed.replaceAll("\\.{3}", ";");
See
- {rule:java:S4248} - Regex patterns should not be created needlessly
Make "refresher" transient or serializable. Open
private Callable<Void> refresher;
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Fields in a Serializable
class must themselves be either Serializable
or transient
even if the class is
never explicitly serialized or deserialized. For instance, under load, most J2EE application frameworks flush objects to disk, and an allegedly
Serializable
object with non-transient, non-serializable data members could cause program crashes, and open the door to attackers. In
general a Serializable
class is expected to fulfil its contract and not have an unexpected behaviour when an instance is serialized.
This rule raises an issue on non-Serializable
fields, and on collection fields when they are not private
(because they
could be assigned non-Serializable
values externally), and when they are assigned non-Serializable
types within the
class.
Noncompliant Code Example
public class Address { //... } public class Person implements Serializable { private static final long serialVersionUID = 1905122041950251207L; private String name; private Address address; // Noncompliant; Address isn't serializable }
Compliant Solution
public class Address implements Serializable { private static final long serialVersionUID = 2405172041950251807L; } public class Person implements Serializable { private static final long serialVersionUID = 1905122041950251207L; private String name; private Address address; }
Exceptions
The alternative to making all members serializable
or transient
is to implement special methods which take on the
responsibility of properly serializing and de-serializing the object. This rule ignores classes which implement the following methods:
private void writeObject(java.io.ObjectOutputStream out) throws IOException private void readObject(java.io.ObjectInputStream in) throws IOException, ClassNotFoundException;
See
- MITRE, CWE-594 - Saving Unserializable Objects to Disk
- Oracle Java 6, Serializable
- Oracle Java 7, Serializable
Define a constant instead of duplicating this literal "CodeSystem" 3 times. Open
String sql = "SELECT DISTINCT(" + DBKernel.delimitL("CodeSystem") + ") FROM " + DBKernel.delimitL(DBKernel.getCodesName(myT.getTablename()));
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Refactor this method to reduce its Cognitive Complexity from 23 to the 15 allowed. Open
public void setSettings(Config c, Integer defAgent, Integer defMatrix, Double defTemp, Double defPh, Double defAw, Double agentConc, Callable<Void> refresher) throws InvalidSettingsException {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.
See
Add a nested comment explaining why this method is empty, throw an UnsupportedOperationException or complete the implementation. Open
public void keyReleased(final KeyEvent keyEvent) {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
There are several reasons for a method not to have a method body:
- It is an unintentional omission, and should be fixed to prevent an unexpected behavior in production.
- It is not yet, or never will be, supported. In this case an
UnsupportedOperationException
should be thrown. - The method is an intentionally-blank override. In this case a nested comment should explain the reason for the blank override.
Noncompliant Code Example
public void doSomething() { } public void doSomethingElse() { }
Compliant Solution
@Override public void doSomething() { // Do nothing because of X and Y. } @Override public void doSomethingElse() { throw new UnsupportedOperationException(); }
Exceptions
Default (no-argument) constructors are ignored when there are other constructors in the class, as are empty methods in abstract classes.
public abstract class Animal { void speak() { // default implementation ignored } }
Use static access with "javax.swing.WindowConstants" for "DO_NOTHING_ON_CLOSE". Open
f.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
In the interest of code clarity, static
members of a base
class should never be accessed using a derived type's name.
Doing so is confusing and could create the illusion that two different static members exist.
Noncompliant Code Example
class Parent { public static int counter; } class Child extends Parent { public Child() { Child.counter++; // Noncompliant } }
Compliant Solution
class Parent { public static int counter; } class Child extends Parent { public Child() { Parent.counter++; } }