Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() {
prepare("action1"); // Noncompliant - "action1" is duplicated 3 times
execute("action1");
release("action1");
}
@SuppressWarning("all") // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }
public String method3(String a) {
System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded
return ""; // Compliant - literal "" has less than 5 characters and is excluded
}
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant
public void run() {
prepare(ACTION_1); // Compliant
execute(ACTION_1);
release(ACTION_1);
}
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() {
prepare("action1"); // Noncompliant - "action1" is duplicated 3 times
execute("action1");
release("action1");
}
@SuppressWarning("all") // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }
public String method3(String a) {
System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded
return ""; // Compliant - literal "" has less than 5 characters and is excluded
}
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant
public void run() {
prepare(ACTION_1); // Compliant
execute(ACTION_1);
release(ACTION_1);
}
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() {
prepare("action1"); // Noncompliant - "action1" is duplicated 3 times
execute("action1");
release("action1");
}
@SuppressWarning("all") // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }
public String method3(String a) {
System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded
return ""; // Compliant - literal "" has less than 5 characters and is excluded
}
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant
public void run() {
prepare(ACTION_1); // Compliant
execute(ACTION_1);
release(ACTION_1);
}
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() {
prepare("action1"); // Noncompliant - "action1" is duplicated 3 times
execute("action1");
release("action1");
}
@SuppressWarning("all") // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }
public String method3(String a) {
System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded
return ""; // Compliant - literal "" has less than 5 characters and is excluded
}
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant
public void run() {
prepare(ACTION_1); // Compliant
execute(ACTION_1);
release(ACTION_1);
}
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be
difficult to maintain.
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() {
prepare("action1"); // Noncompliant - "action1" is duplicated 3 times
execute("action1");
release("action1");
}
@SuppressWarning("all") // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }
public String method3(String a) {
System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded
return ""; // Compliant - literal "" has less than 5 characters and is excluded
}
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant
public void run() {
prepare(ACTION_1); // Compliant
execute(ACTION_1);
release(ACTION_1);
}
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() {
prepare("action1"); // Noncompliant - "action1" is duplicated 3 times
execute("action1");
release("action1");
}
@SuppressWarning("all") // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }
public String method3(String a) {
System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded
return ""; // Compliant - literal "" has less than 5 characters and is excluded
}
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant
public void run() {
prepare(ACTION_1); // Compliant
execute(ACTION_1);
release(ACTION_1);
}
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() {
prepare("action1"); // Noncompliant - "action1" is duplicated 3 times
execute("action1");
release("action1");
}
@SuppressWarning("all") // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }
public String method3(String a) {
System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded
return ""; // Compliant - literal "" has less than 5 characters and is excluded
}
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant
public void run() {
prepare(ACTION_1); // Compliant
execute(ACTION_1);
release(ACTION_1);
}
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() {
prepare("action1"); // Noncompliant - "action1" is duplicated 3 times
execute("action1");
release("action1");
}
@SuppressWarning("all") // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }
public String method3(String a) {
System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded
return ""; // Compliant - literal "" has less than 5 characters and is excluded
}
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant
public void run() {
prepare(ACTION_1); // Compliant
execute(ACTION_1);
release(ACTION_1);
}
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() {
prepare("action1"); // Noncompliant - "action1" is duplicated 3 times
execute("action1");
release("action1");
}
@SuppressWarning("all") // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }
public String method3(String a) {
System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded
return ""; // Compliant - literal "" has less than 5 characters and is excluded
}
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant
public void run() {
prepare(ACTION_1); // Compliant
execute(ACTION_1);
release(ACTION_1);
}
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() {
prepare("action1"); // Noncompliant - "action1" is duplicated 3 times
execute("action1");
release("action1");
}
@SuppressWarning("all") // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }
public String method3(String a) {
System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded
return ""; // Compliant - literal "" has less than 5 characters and is excluded
}
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant
public void run() {
prepare(ACTION_1); // Compliant
execute(ACTION_1);
release(ACTION_1);
}
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() {
prepare("action1"); // Noncompliant - "action1" is duplicated 3 times
execute("action1");
release("action1");
}
@SuppressWarning("all") // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }
public String method3(String a) {
System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded
return ""; // Compliant - literal "" has less than 5 characters and is excluded
}
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant
public void run() {
prepare(ACTION_1); // Compliant
execute(ACTION_1);
release(ACTION_1);
}
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() {
prepare("action1"); // Noncompliant - "action1" is duplicated 3 times
execute("action1");
release("action1");
}
@SuppressWarning("all") // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }
public String method3(String a) {
System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded
return ""; // Compliant - literal "" has less than 5 characters and is excluded
}
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant
public void run() {
prepare(ACTION_1); // Compliant
execute(ACTION_1);
release(ACTION_1);
}
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() {
prepare("action1"); // Noncompliant - "action1" is duplicated 3 times
execute("action1");
release("action1");
}
@SuppressWarning("all") // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }
public String method3(String a) {
System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded
return ""; // Compliant - literal "" has less than 5 characters and is excluded
}
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant
public void run() {
prepare(ACTION_1); // Compliant
execute(ACTION_1);
release(ACTION_1);
}
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Connections, streams, files, and other classes that implement the Closeable interface or its super-interface,
AutoCloseable, needs to be closed after use. Further, that close call must be made in a finally block otherwise
an exception could keep the call from being made. Preferably, when class implements AutoCloseable, resource should be created using
"try-with-resources" pattern and will be closed automatically.
Failure to properly close resources will result in a resource leak which could bring first the application and then perhaps the box the application
is on to their knees.
Noncompliant Code Example
private void readTheFile() throws IOException {
Path path = Paths.get(this.fileName);
BufferedReader reader = Files.newBufferedReader(path, this.charset);
// ...
reader.close(); // Noncompliant
// ...
Files.lines("input.txt").forEach(System.out::println); // Noncompliant: The stream needs to be closed
}
private void doSomething() {
OutputStream stream = null;
try {
for (String property : propertyList) {
stream = new FileOutputStream("myfile.txt"); // Noncompliant
// ...
}
} catch (Exception e) {
// ...
} finally {
stream.close(); // Multiple streams were opened. Only the last is closed.
}
}
Instances of the following classes are ignored by this rule because close has no effect:
java.io.ByteArrayOutputStream
java.io.ByteArrayInputStream
java.io.CharArrayReader
java.io.CharArrayWriter
java.io.StringReader
java.io.StringWriter
Java 7 introduced the try-with-resources statement, which implicitly closes Closeables. All resources opened in a try-with-resources
statement are ignored by this rule.
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() {
prepare("action1"); // Noncompliant - "action1" is duplicated 3 times
execute("action1");
release("action1");
}
@SuppressWarning("all") // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }
public String method3(String a) {
System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded
return ""; // Compliant - literal "" has less than 5 characters and is excluded
}
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant
public void run() {
prepare(ACTION_1); // Compliant
execute(ACTION_1);
release(ACTION_1);
}
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() {
prepare("action1"); // Noncompliant - "action1" is duplicated 3 times
execute("action1");
release("action1");
}
@SuppressWarning("all") // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }
public String method3(String a) {
System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded
return ""; // Compliant - literal "" has less than 5 characters and is excluded
}
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant
public void run() {
prepare(ACTION_1); // Compliant
execute(ACTION_1);
release(ACTION_1);
}
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
In the interest of code clarity, static members of a base class should never be accessed using a derived type's name.
Doing so is confusing and could create the illusion that two different static members exist.
Noncompliant Code Example
class Parent {
public static int counter;
}
class Child extends Parent {
public Child() {
Child.counter++; // Noncompliant
}
}
Compliant Solution
class Parent {
public static int counter;
}
class Child extends Parent {
public Child() {
Parent.counter++;
}
}
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be
difficult to maintain.
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be
difficult to maintain.