SiLeBAT/FSK-Lab

View on GitHub

Showing 14,752 of 14,752 total issues

Refactor this method to reduce its Cognitive Complexity from 22 to the 15 allowed.
Open

    public double[][] getFunctionPoints(String paramX, String paramY,

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Refactor this method to reduce its Cognitive Complexity from 27 to the 15 allowed.
Open

  protected PortObject[] performExecute(PortObject[] inObjects, ExecutionContext exec)

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Refactor this method to reduce its Cognitive Complexity from 44 to the 15 allowed.
Open

        public Object getValueAt(int row, int column) {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Use try-with-resources or close this "ObjectInputStream" in a "finally" clause.
Open

          final ObjectInputStream ois = new ObjectInputStream(in);

Connections, streams, files, and other classes that implement the Closeable interface or its super-interface, AutoCloseable, needs to be closed after use. Further, that close call must be made in a finally block otherwise an exception could keep the call from being made. Preferably, when class implements AutoCloseable, resource should be created using "try-with-resources" pattern and will be closed automatically.

Failure to properly close resources will result in a resource leak which could bring first the application and then perhaps the box the application is on to their knees.

Noncompliant Code Example

private void readTheFile() throws IOException {
  Path path = Paths.get(this.fileName);
  BufferedReader reader = Files.newBufferedReader(path, this.charset);
  // ...
  reader.close();  // Noncompliant
  // ...
  Files.lines("input.txt").forEach(System.out::println); // Noncompliant: The stream needs to be closed
}

private void doSomething() {
  OutputStream stream = null;
  try {
    for (String property : propertyList) {
      stream = new FileOutputStream("myfile.txt");  // Noncompliant
      // ...
    }
  } catch (Exception e) {
    // ...
  } finally {
    stream.close();  // Multiple streams were opened. Only the last is closed.
  }
}

Compliant Solution

private void readTheFile(String fileName) throws IOException {
    Path path = Paths.get(fileName);
    try (BufferedReader reader = Files.newBufferedReader(path, StandardCharsets.UTF_8)) {
      reader.readLine();
      // ...
    }
    // ..
    try (Stream<String> input = Files.lines("input.txt"))  {
      input.forEach(System.out::println);
    }
}

private void doSomething() {
  OutputStream stream = null;
  try {
    stream = new FileOutputStream("myfile.txt");
    for (String property : propertyList) {
      // ...
    }
  } catch (Exception e) {
    // ...
  } finally {
    stream.close();
  }
}

Exceptions

Instances of the following classes are ignored by this rule because close has no effect:

  • java.io.ByteArrayOutputStream
  • java.io.ByteArrayInputStream
  • java.io.CharArrayReader
  • java.io.CharArrayWriter
  • java.io.StringReader
  • java.io.StringWriter

Java 7 introduced the try-with-resources statement, which implicitly closes Closeables. All resources opened in a try-with-resources statement are ignored by this rule.

try (BufferedReader br = new BufferedReader(new FileReader(fileName))) {
  //...
}
catch ( ... ) {
  //...
}

See

Refactor this method to reduce its Cognitive Complexity from 20 to the 15 allowed.
Open

        private void updateCheckBoxes() {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Make "listeners" transient or serializable.
Open

    private List<FileListener> listeners;

Fields in a Serializable class must themselves be either Serializable or transient even if the class is never explicitly serialized or deserialized. For instance, under load, most J2EE application frameworks flush objects to disk, and an allegedly Serializable object with non-transient, non-serializable data members could cause program crashes, and open the door to attackers. In general a Serializable class is expected to fulfil its contract and not have an unexpected behaviour when an instance is serialized.

This rule raises an issue on non-Serializable fields, and on collection fields when they are not private (because they could be assigned non-Serializable values externally), and when they are assigned non-Serializable types within the class.

Noncompliant Code Example

public class Address {
  //...
}

public class Person implements Serializable {
  private static final long serialVersionUID = 1905122041950251207L;

  private String name;
  private Address address;  // Noncompliant; Address isn't serializable
}

Compliant Solution

public class Address implements Serializable {
  private static final long serialVersionUID = 2405172041950251807L;
}

public class Person implements Serializable {
  private static final long serialVersionUID = 1905122041950251207L;

  private String name;
  private Address address;
}

Exceptions

The alternative to making all members serializable or transient is to implement special methods which take on the responsibility of properly serializing and de-serializing the object. This rule ignores classes which implement the following methods:

 private void writeObject(java.io.ObjectOutputStream out)
     throws IOException
 private void readObject(java.io.ObjectInputStream in)
     throws IOException, ClassNotFoundException;

See

Define a constant instead of duplicating this literal "genericModel" 4 times.
Open

        modelClasses.put("genericModel", GenericModel.class);

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Refactor this method to reduce its Cognitive Complexity from 17 to the 15 allowed.
Open

    public static void removeNullValues(List<Double> targetValues, List<List<Double>> argumentValues) {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Refactor this method to reduce its Cognitive Complexity from 120 to the 15 allowed.
Open

    public static HashMap<Integer, Integer> setTsIDs(boolean before, String attr,

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Define a constant instead of duplicating this literal "DataFrame" 3 times.
Open

          String parameterDataType = isDataFrame ? "DataFrame" : p.getDataType().getValue();

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Define a constant instead of duplicating this literal ":vocabulary" 3 times.
Open

                BasicRepository<?> repository = getRepository(req.params(":vocabulary"), connection);

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Save and re-use this "Random".
Open

        Random r = new Random();

Creating a new Random object each time a random value is needed is inefficient and may produce numbers which are not random depending on the JDK. For better efficiency and randomness, create a single Random, then store, and reuse it.

The Random() constructor tries to set the seed with a distinct value every time. However there is no guarantee that the seed will be random or even uniformly distributed. Some JDK will use the current time as seed, which makes the generated numbers not random at all.

This rule finds cases where a new Random is created each time a method is invoked and assigned to a local random variable.

Noncompliant Code Example

public void doSomethingCommon() {
  Random rand = new Random();  // Noncompliant; new instance created with each invocation
  int rValue = rand.nextInt();
  //...

Compliant Solution

private Random rand = SecureRandom.getInstanceStrong();  // SecureRandom is preferred to Random

public void doSomethingCommon() {
  int rValue = this.rand.nextInt();
  //...

Exceptions

A class which uses a Random in its constructor or in a static main function and nowhere else will be ignored by this rule.

See

Replace this call to "replaceAll()" by a call to the "replace()" method.
Open

          + tempData.getAbsolutePath().replaceAll("\\\\", "/") + "')";

The underlying implementation of String::replaceAll calls the java.util.regex.Pattern.compile() method each time it is called even if the first argument is not a regular expression. This has a significant performance cost and therefore should be used with care.

When String::replaceAll is used, the first argument should be a real regular expression. If it’s not the case, String::replace does exactly the same thing as String::replaceAll without the performance drawback of the regex.

This rule raises an issue for each String::replaceAll used with a String as first parameter which doesn’t contains special regex character or pattern.

Noncompliant Code Example

String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!";
String changed = init.replaceAll("Bob is", "It's"); // Noncompliant
changed = changed.replaceAll("\\.\\.\\.", ";"); // Noncompliant

Compliant Solution

String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!";
String changed = init.replace("Bob is", "It's");
changed = changed.replace("...", ";");

Or, with a regex:

String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!";
String changed = init.replaceAll("\\w*\\sis", "It's");
changed = changed.replaceAll("\\.{3}", ";");

See

  • {rule:java:S4248} - Regex patterns should not be created needlessly

Define a constant instead of duplicating this literal "UTF-8" 11 times.
Open

      IOUtils.write(portObject.model, out, "UTF-8");

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Add a nested comment explaining why this method is empty, throw an UnsupportedOperationException or complete the implementation.
Open

  protected void loadValidatedSettingsFrom(NodeSettingsRO settings)

There are several reasons for a method not to have a method body:

  • It is an unintentional omission, and should be fixed to prevent an unexpected behavior in production.
  • It is not yet, or never will be, supported. In this case an UnsupportedOperationException should be thrown.
  • The method is an intentionally-blank override. In this case a nested comment should explain the reason for the blank override.

Noncompliant Code Example

public void doSomething() {
}

public void doSomethingElse() {
}

Compliant Solution

@Override
public void doSomething() {
  // Do nothing because of X and Y.
}

@Override
public void doSomethingElse() {
  throw new UnsupportedOperationException();
}

Exceptions

Default (no-argument) constructors are ignored when there are other constructors in the class, as are empty methods in abstract classes.

public abstract class Animal {
  void speak() {  // default implementation ignored
  }
}

Rename this constant name to match the regular expression '^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$'.
Open

        MD, Model1, Model2

Shared coding conventions allow teams to collaborate efficiently. This rule checks that all constant names match a provided regular expression.

Noncompliant Code Example

With the default regular expression ^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$:

public class MyClass {
  public static final int first = 1;
}

public enum MyEnum {
  first;
}

Compliant Solution

public class MyClass {
  public static final int FIRST = 1;
}

public enum MyEnum {
  FIRST;
}

Make the enclosing method "static" or remove this set.
Open

        Activator.context = bundleContext;

Correctly updating a static field from a non-static method is tricky to get right and could easily lead to bugs if there are multiple class instances and/or multiple threads in play. Ideally, static fields are only updated from synchronized static methods.

This rule raises an issue each time a static field is updated from a non-static method.

Noncompliant Code Example

public class MyClass {

  private static int count = 0;

  public void doSomething() {
    //...
    count++;  // Noncompliant
  }
}

Remove this throw statement from this finally block.
Open

          throw new ModelScriptException(getStdErr());  

Using return, break, throw, and so on from a finally block suppresses the propagation of any unhandled Throwable which was thrown in the try or catch block.

This rule raises an issue when a jump statement (break, continue, return, throw, and goto) would force control flow to leave a finally block.

Noncompliant Code Example

public static void main(String[] args) {
  try {
    doSomethingWhichThrowsException();
    System.out.println("OK");   // incorrect "OK" message is printed
  } catch (RuntimeException e) {
    System.out.println("ERROR");  // this message is not shown
  }
}

public static void doSomethingWhichThrowsException() {
  try {
    throw new RuntimeException();
  } finally {
    for (int i = 0; i < 10; i ++) {
      //...
      if (q == i) {
        break; // ignored
      }
    }

    /* ... */
    return;      // Noncompliant - prevents the RuntimeException from being propagated
  }
}

Compliant Solution

public static void main(String[] args) {
  try {
    doSomethingWhichThrowsException();
    System.out.println("OK");
  } catch (RuntimeException e) {
    System.out.println("ERROR");  // "ERROR" is printed as expected
  }
}

public static void doSomethingWhichThrowsException() {
  try {
    throw new RuntimeException();
  } finally {
    for (int i = 0; i < 10; i ++) {
      //...
      if (q == i) {
        break; // ignored
      }
    }

    /* ... */
  }
}

See

Define a constant instead of duplicating this literal "FittedFilter" 4 times.
Open

        settings.addString("FittedFilter", "fittedFilter");

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Define a constant instead of duplicating this literal "FittedModelName" 4 times.
Open

        if (modelElement.getAttributeValue("FittedModelName") != null

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Severity
Category
Status
Source
Language