Showing 14,752 of 14,752 total issues
Refactor this method to reduce its Cognitive Complexity from 18 to the 15 allowed. Open
public boolean complies(KnimeTuple tuple) throws PmmException {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.
See
Move constants defined in this interfaces to another class or enum. Open
public interface PmmConstants {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
According to Joshua Bloch, author of "Effective Java":
The constant interface pattern is a poor use of interfaces.
That a class uses some constants internally is an implementation detail.
Implementing a constant interface causes this implementation detail to leak into the class's exported API. It is of no consequence to the users of a class that the class implements a constant interface. In fact, it may even confuse them. Worse, it represents a commitment: if in a future release the class is modified so that it no longer needs to use the constants, it still must implement the interface to ensure binary compatibility. If a nonfinal class implements a constant interface,
all of its subclasses will have their namespaces polluted by the constants in the interface.
This rule raises an issue when an interface consists solely of fields, without any other members.
Noncompliant Code Example
interface Status { // Noncompliant int OPEN = 1; int CLOSED = 2; }
Compliant Solution
public enum Status { // Compliant OPEN, CLOSED; }
or
public final class Status { // Compliant public static final int OPEN = 1; public static final int CLOSED = 2; }
Refactor this method to reduce its Cognitive Complexity from 19 to the 15 allowed. Open
private Color getColor(String param, Color lastBG, String lastParam) {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.
See
Define a constant instead of duplicating this literal "treatment" 4 times. Open
OLD_PRODUCT.setProductTreatment("treatment");
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "firstIn_dup" 3 times. Open
ReaderNodeUtil.addSuffix(firstModelParameters, "firstIn_dup"));
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "firstIn" 19 times. Open
firstModelParameters.add("firstIn");
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Make the enclosing method "static" or remove this set. Open
cairoFound = true;
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Correctly updating a static
field from a non-static method is tricky to get right and could easily lead to bugs if there are multiple
class instances and/or multiple threads in play. Ideally, static
fields are only updated from synchronized static
methods.
This rule raises an issue each time a static
field is updated from a non-static method.
Noncompliant Code Example
public class MyClass { private static int count = 0; public void doSomething() { //... count++; // Noncompliant } }
Remove this call to "wait" or move it into a "while" loop. Open
instance.wait(RConnectionResource.RPROCESS_TIMEOUT + 2000);
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
According to the documentation of the Java Condition
interface:
When waiting upon a
Condition
, a "spurious wakeup" is permitted to occur, in general, as a concession to the underlying platform semantics. This has little practical impact on most application programs as a Condition should always be waited upon in a loop, testing the state predicate that is being waited for. An implementation is free to remove the possibility of spurious wakeups but it is recommended that applications programmers always assume that they can occur and so always wait in a loop.
The same advice is also found for the Object.wait(...)
method:
waits should always occur in loops, like this one:
synchronized (obj) { while (<condition does not hold>){ obj.wait(timeout); } ... // Perform action appropriate to condition }
Noncompliant Code Example
synchronized (obj) { if (!suitableCondition()){ obj.wait(timeout); //the thread can wake up even if the condition is still false } ... // Perform action appropriate to condition }
Compliant Solution
synchronized (obj) { while (!suitableCondition()){ obj.wait(timeout); } ... // Perform action appropriate to condition }
See
- CERT THI03-J. - Always invoke wait() and await() methods inside a loop
Define a constant instead of duplicating this literal "origConcentrationUnit" 8 times. Open
"concentrationUnitObjectType", "origConcentrationUnit", 0.0, 1);
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "comment" 4 times. Open
series.setMdInfo(new PmmXmlDoc(new MdInfoXml(0, "name", "comment", 0, false)));
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "volume" 4 times. Open
LiteratureItem literatureItem = new LiteratureItem("author", 0, "title", "abstractText", "journal", "volume",
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "abstractText" 4 times. Open
final LiteratureItem item0 = new LiteratureItem("author", 0, "title", "abstractText", "journal", "volume", "issue", 0,
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "title" 4 times. Open
final LiteratureItem item0 = new LiteratureItem("author", 0, "title", "abstractText", "journal", "volume", "issue", 0,
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "\">
" 13 times. Open
buffer.append("<tr class=\"" + getRowClass(row) + "\">\n");
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "http://www.bfr.bund.de/PCML-1_0" 4 times. Open
new javax.xml.namespace.QName("http://www.bfr.bund.de/PCML-1_0", "ChildParent");
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Rename this constant name to match the regular expression '^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$'. Open
Environment_Name,
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Shared coding conventions allow teams to collaborate efficiently. This rule checks that all constant names match a provided regular expression.
Noncompliant Code Example
With the default regular expression ^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$
:
public class MyClass { public static final int first = 1; } public enum MyEnum { first; }
Compliant Solution
public class MyClass { public static final int FIRST = 1; } public enum MyEnum { FIRST; }
Rename this constant name to match the regular expression '^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$'. Open
Model_Creator,
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Shared coding conventions allow teams to collaborate efficiently. This rule checks that all constant names match a provided regular expression.
Noncompliant Code Example
With the default regular expression ^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$
:
public class MyClass { public static final int first = 1; } public enum MyEnum { first; }
Compliant Solution
public class MyClass { public static final int FIRST = 1; } public enum MyEnum { FIRST; }
Rename this constant name to match the regular expression '^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$'. Open
Model_Family_Name,
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Shared coding conventions allow teams to collaborate efficiently. This rule checks that all constant names match a provided regular expression.
Noncompliant Code Example
With the default regular expression ^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$
:
public class MyClass { public static final int first = 1; } public enum MyEnum { first; }
Compliant Solution
public class MyClass { public static final int FIRST = 1; } public enum MyEnum { FIRST; }
Rename this constant name to match the regular expression '^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$'. Open
Dependent_Variable_Unit,
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Shared coding conventions allow teams to collaborate efficiently. This rule checks that all constant names match a provided regular expression.
Noncompliant Code Example
With the default regular expression ^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$
:
public class MyClass { public static final int first = 1; } public enum MyEnum { first; }
Compliant Solution
public class MyClass { public static final int FIRST = 1; } public enum MyEnum { FIRST; }
Rename this constant name to match the regular expression '^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$'. Open
Independent_Variable_Values,
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Shared coding conventions allow teams to collaborate efficiently. This rule checks that all constant names match a provided regular expression.
Noncompliant Code Example
With the default regular expression ^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$
:
public class MyClass { public static final int first = 1; } public enum MyEnum { first; }
Compliant Solution
public class MyClass { public static final int FIRST = 1; } public enum MyEnum { FIRST; }