Method to_play
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def to_play(color, pos)
if pos == ''
gtp_pos = 'pass'
else
pos = pos.bytes
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
SGF::GtpWriter#gtp_move refers to 'pps' more than self (maybe move it to another class?) Open
if pps['SZ']
@boardsize = pps['SZ'].to_i
out = []
out << "komi #{pps['KM']}" if pps['KM']
out << "boardsize #{pps['SZ']}\nclear_board"
- Read upRead up
- Exclude checks
Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.
Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.
Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.
Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.
Example
Running Reek on:
class Warehouse
def sale_price(item)
(item.price - item.rebate) * @vat
end
end
would report:
Warehouse#total_price refers to item more than self (FeatureEnvy)
since this:
(item.price - item.rebate)
belongs to the Item class, not the Warehouse.
SGF::GtpWriter#gtp_move has approx 13 statements Open
def gtp_move(node)
- Read upRead up
- Exclude checks
A method with Too Many Statements
is any method that has a large number of lines.
Too Many Statements
warns about any method that has more than 5 statements. Reek's smell detector for Too Many Statements
counts +1 for every simple statement in a method and +1 for every statement within a control structure (if
, else
, case
, when
, for
, while
, until
, begin
, rescue
) but it doesn't count the control structure itself.
So the following method would score +6 in Reek's statement-counting algorithm:
def parse(arg, argv, &error)
if !(val = arg) and (argv.empty? or /\A-/ =~ (val = argv[0]))
return nil, block, nil # +1
end
opt = (val = parse_arg(val, &error))[1] # +2
val = conv_arg(*val) # +3
if opt and !arg
argv.shift # +4
else
val[0] = nil # +5
end
val # +6
end
(You might argue that the two assigments within the first @if@ should count as statements, and that perhaps the nested assignment should count as +2.)
SGF::GtpWriter#to_play refers to 'pos' more than self (maybe move it to another class?) Open
if pos == ''
gtp_pos = 'pass'
else
pos = pos.bytes
# for some reason, GTP skip the letter `I` in the coordinate.
- Read upRead up
- Exclude checks
Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.
Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.
Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.
Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.
Example
Running Reek on:
class Warehouse
def sale_price(item)
(item.price - item.rebate) * @vat
end
end
would report:
Warehouse#total_price refers to item more than self (FeatureEnvy)
since this:
(item.price - item.rebate)
belongs to the Item class, not the Warehouse.
SGF::GtpWriter#to_play has approx 8 statements Open
def to_play(color, pos)
- Read upRead up
- Exclude checks
A method with Too Many Statements
is any method that has a large number of lines.
Too Many Statements
warns about any method that has more than 5 statements. Reek's smell detector for Too Many Statements
counts +1 for every simple statement in a method and +1 for every statement within a control structure (if
, else
, case
, when
, for
, while
, until
, begin
, rescue
) but it doesn't count the control structure itself.
So the following method would score +6 in Reek's statement-counting algorithm:
def parse(arg, argv, &error)
if !(val = arg) and (argv.empty? or /\A-/ =~ (val = argv[0]))
return nil, block, nil # +1
end
opt = (val = parse_arg(val, &error))[1] # +2
val = conv_arg(*val) # +3
if opt and !arg
argv.shift # +4
else
val[0] = nil # +5
end
val # +6
end
(You might argue that the two assigments within the first @if@ should count as statements, and that perhaps the nested assignment should count as +2.)
SGF::GtpWriter#to_play calls 'pos[0]' 3 times Open
x = (pos[0] > 104 ? pos[0] + 1 : pos[0]).chr.upcase
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
SGF::GtpWriter#to_play calls 'pos[1] - 96' 2 times Open
(1 + @boardsize) - (pos[1] - 96)
else
pos[1] - 96
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
SGF::GtpWriter assumes too much for instance variable '@sgf' Open
class SGF::GtpWriter < SGF::Writer
- Read upRead up
- Exclude checks
Classes should not assume that instance variables are set or present outside of the current class definition.
Good:
class Foo
def initialize
@bar = :foo
end
def foo?
@bar == :foo
end
end
Good as well:
class Foo
def foo?
bar == :foo
end
def bar
@bar ||= :foo
end
end
Bad:
class Foo
def go_foo!
@bar = :foo
end
def foo?
@bar == :foo
end
end
Example
Running Reek on:
class Dummy
def test
@ivar
end
end
would report:
[1]:InstanceVariableAssumption: Dummy assumes too much for instance variable @ivar
Note that this example would trigger this smell warning as well:
class Parent
def initialize(omg)
@omg = omg
end
end
class Child < Parent
def foo
@omg
end
end
The way to address the smell warning is that you should create an attr_reader
to use @omg
in the subclass and not access @omg
directly like this:
class Parent
attr_reader :omg
def initialize(omg)
@omg = omg
end
end
class Child < Parent
def foo
omg
end
end
Directly accessing instance variables is considered a smell because it breaks encapsulation and makes it harder to reason about code.
If you don't want to expose those methods as public API just make them private like this:
class Parent
def initialize(omg)
@omg = omg
end
private
attr_reader :omg
end
class Child < Parent
def foo
omg
end
end
Current Support in Reek
An instance variable must:
- be set in the constructor
- or be accessed through a method with lazy initialization / memoization.
If not, Instance Variable Assumption will be reported.
SGF::GtpWriter#gtp_move calls 'pps['W']' 2 times Open
elsif pps['W']
to_play('W', pps['W'])
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
SGF::GtpWriter#gtp_move calls 'pps['SZ']' 3 times Open
if pps['SZ']
@boardsize = pps['SZ'].to_i
out = []
out << "komi #{pps['KM']}" if pps['KM']
out << "boardsize #{pps['SZ']}\nclear_board"
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
SGF::GtpWriter assumes too much for instance variable '@boardsize' Open
class SGF::GtpWriter < SGF::Writer
- Read upRead up
- Exclude checks
Classes should not assume that instance variables are set or present outside of the current class definition.
Good:
class Foo
def initialize
@bar = :foo
end
def foo?
@bar == :foo
end
end
Good as well:
class Foo
def foo?
bar == :foo
end
def bar
@bar ||= :foo
end
end
Bad:
class Foo
def go_foo!
@bar = :foo
end
def foo?
@bar == :foo
end
end
Example
Running Reek on:
class Dummy
def test
@ivar
end
end
would report:
[1]:InstanceVariableAssumption: Dummy assumes too much for instance variable @ivar
Note that this example would trigger this smell warning as well:
class Parent
def initialize(omg)
@omg = omg
end
end
class Child < Parent
def foo
@omg
end
end
The way to address the smell warning is that you should create an attr_reader
to use @omg
in the subclass and not access @omg
directly like this:
class Parent
attr_reader :omg
def initialize(omg)
@omg = omg
end
end
class Child < Parent
def foo
omg
end
end
Directly accessing instance variables is considered a smell because it breaks encapsulation and makes it harder to reason about code.
If you don't want to expose those methods as public API just make them private like this:
class Parent
def initialize(omg)
@omg = omg
end
private
attr_reader :omg
end
class Child < Parent
def foo
omg
end
end
Current Support in Reek
An instance variable must:
- be set in the constructor
- or be accessed through a method with lazy initialization / memoization.
If not, Instance Variable Assumption will be reported.
SGF::GtpWriter#gtp_move calls 'pps['B']' 2 times Open
elsif pps['B']
to_play('B', pps['B'])
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
SGF::GtpWriter#to_play calls 'pos[1]' 2 times Open
(1 + @boardsize) - (pos[1] - 96)
else
pos[1] - 96
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
SGF::GtpWriter#gtp_move calls 'pps['KM']' 2 times Open
out << "komi #{pps['KM']}" if pps['KM']
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Method gtp_move
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def gtp_move(node)
pps = node.properties
if pps['SZ']
@boardsize = pps['SZ'].to_i
out = []
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
SGF::GtpWriter#upside_down is a writable attribute Open
attr_writer :upside_down
- Read upRead up
- Exclude checks
A class that publishes a setter for an instance variable invites client classes to become too intimate with its inner workings, and in particular with its representation of state.
The same holds to a lesser extent for getters, but Reek doesn't flag those.
Example
Given:
class Klass
attr_accessor :dummy
end
Reek would emit the following warning:
reek test.rb
test.rb -- 1 warning:
[2]:Klass declares the writable attribute dummy (Attribute)
SGF::GtpWriter#to_play has the variable name 'x' Open
x = (pos[0] > 104 ? pos[0] + 1 : pos[0]).chr.upcase
- Read upRead up
- Exclude checks
An Uncommunicative Variable Name
is a variable name that doesn't communicate its intent well enough.
Poor names make it hard for the reader to build a mental picture of what's going on in the code. They can also be mis-interpreted; and they hurt the flow of reading, because the reader must slow down to interpret the names.
SGF::GtpWriter#to_play has the variable name 'y' Open
y = if @upside_down && @boardsize
- Read upRead up
- Exclude checks
An Uncommunicative Variable Name
is a variable name that doesn't communicate its intent well enough.
Poor names make it hard for the reader to build a mental picture of what's going on in the code. They can also be mis-interpreted; and they hurt the flow of reading, because the reader must slow down to interpret the names.
unexpected token error
(Using Ruby 2.1 parser; configure using TargetRubyVersion
parameter, under AllCops
) Open
pps['AW']&.each { |pos| out << to_play('W', pos) }
- Exclude checks
unexpected token error
(Using Ruby 2.1 parser; configure using TargetRubyVersion
parameter, under AllCops
) Open
pps['AB']&.each { |pos| out << to_play('B', pos) }
- Exclude checks