matlab/solveTVgen.cpp
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include "mex.h"
#include "../src/TVopt.h"
/* solveTVgen.cpp
Solves the general TV proximity problem by applying a Proximal stacking strategy.
Parameters:
- 0: multidimensional reference signal y.
- 1: vector of lambda penalties of each penalty term.
- 2: vector of dimensions of application of each penalty term.
- 3: vector of norms of each penalty term.
- 4: (optional) number of cores to use (default: as defined by environment variable OMP_NUM_THREADS)
- 5: (optional) maximum number of iterations to run (default: as defined in TVopt.h)
Outputs:
- 0: solution x.
- 1: array with optimizer information:
+ [0]: number of iterations run.
+ [1]: stopping tolerance.
*/
void mexFunction(int nlhs, mxArray *plhs[ ],int nrhs, const mxArray *prhs[ ]) {
const mwSize *sDims;
double *x=NULL,*y,*info=NULL,*dims,*norms;
double *lambdas;
int *ns=NULL;
int nds,N,M,npen,ncores,maxIters,i;
#define FREE \
if(!nlhs) free(x); \
if(ns) free(ns);
#define CANCEL(txt) \
printf("Error in solveTVgen_PDykstrac: %s\n",txt); \
if(x) free(x); \
if(info) free(info); \
if(ns) free(ns); \
return;
/* Check input correctness */
if(nrhs < 4){CANCEL("not enought inputs");}
if(!mxIsClass(prhs[0],"double")) {CANCEL("input signal must be in double format")}
if(!mxIsClass(prhs[1],"double")) {CANCEL("penalties must be in double format")}
/* Find number of dimensions of the input signal */
nds=mxGetNumberOfDimensions(prhs[0]);
/* Get dimensions of input signal */
sDims = mxGetDimensions(prhs[0]);
/* Convert dimensions to C array */
ns = (int*)malloc(sizeof(int)*nds);
if(!ns) {CANCEL("out of memory")}
for(i=0;i<nds;i++) ns[i] = (int)sDims[i];
/* Get input signal */
y = mxGetPr(prhs[0]);
/* Get rest of inputs */
lambdas = mxGetPr(prhs[1]);
dims = mxGetPr(prhs[2]);
norms = mxGetPr(prhs[3]);
M = mxGetM(prhs[1]);
N = mxGetN(prhs[1]);
npen = (M > N) ? M : N;
if(nrhs >= 5) ncores = (int)(mxGetPr(prhs[4]))[0];
else ncores = 1;
if(nrhs >= 6) maxIters = (int)(mxGetPr(prhs[5]))[0];
else maxIters = 0;
/* Create output arrays */
if(nlhs >= 1){
plhs[0]=mxCreateNumericArray(nds,sDims,mxDOUBLE_CLASS,mxREAL);
if(!plhs[0]){CANCEL("out of memory")}
x=mxGetPr(plhs[0]);
}
else x = (double*)malloc(sizeof(double)*mxGetNumberOfElements(prhs[0]));
if(nlhs >= 2){
plhs[1] = mxCreateDoubleMatrix(N_INFO,1,mxREAL);
info = mxGetPr(plhs[1]);
}
else info = NULL;
/* Run algorithm depending on the structure of the data and the requested penalties */
// Bidimensional signal with one penalty term across each dimension (full 2-dimensional TV proximity): Douglas-Rachford splitting
if ( nds == 2 && dims[0] == 1 && dims[1] == 2 )
DR2_TV(ns[0], ns[1], y, lambdas[0], lambdas[1], norms[0], norms[1], x, ncores, maxIters, info);
// 2 arbitrary terms: Proximal Dykstra
else if( npen == 2 )
PD2_TV(y,lambdas,norms,dims,x,info,ns,nds,npen,ncores,maxIters);
// More terms: Parallel Proximal Dykstra
else
PD_TV(y,lambdas,norms,dims,x,info,ns,nds,npen,ncores,maxIters);
/* Free resources */
FREE
return;
#undef FREE
#undef CANCEL
}