Reduce the number of returns of this function 5, down to the maximum allowed 3. Open
private static function assertTypeCheck($value, $type)
- Read upRead up
- Exclude checks
Having too many return statements in a function increases the function's essential complexity because the flow of execution is broken each time a return statement is encountered. This makes it harder to read and understand the logic of the function.
Noncompliant Code Example
With the default threshold of 3:
function myFunction(){ // Noncompliant as there are 4 return statements if (condition1) { return true; } else { if (condition2) { return false; } else { return true; } } return false; }
Reduce the number of returns of this function 4, down to the maximum allowed 3. Open
public static function inspect(PromiseInterface $promise)
- Read upRead up
- Exclude checks
Having too many return statements in a function increases the function's essential complexity because the flow of execution is broken each time a return statement is encountered. This makes it harder to read and understand the logic of the function.
Noncompliant Code Example
With the default threshold of 3:
function myFunction(){ // Noncompliant as there are 4 return statements if (condition1) { return true; } else { if (condition2) { return false; } else { return true; } } return false; }
Define a constant instead of duplicating this literal "state" 6 times. Open
'state' => Promise::FULFILLED,
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Remove the unused function parameter "$index". Open
static function ($reason, $index, PromiseInterface $aggregate) {
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Define a constant instead of duplicating this literal "reason" 4 times. Open
return array('state' => PromiseInterface::REJECTED, 'reason' => $e->getReason());
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Similar blocks of code found in 2 locations. Consider refactoring. Open
public static function assertType($value, $type, $allowNull = true)
{
if ($allowNull && $value === null) {
return;
}
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 93.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76