dotcloud/docker

View on GitHub
libnetwork/networkdb/cluster.go

Summary

Maintainability
C
1 day
Test Coverage
package networkdb

import (
    "bytes"
    "context"
    "crypto/rand"
    "encoding/hex"
    "fmt"
    golog "log"
    "math/big"
    rnd "math/rand"
    "net"
    "strings"
    "time"

    "github.com/containerd/log"
    "github.com/hashicorp/memberlist"
)

const (
    reapPeriod       = 5 * time.Second
    retryInterval    = 1 * time.Second
    nodeReapInterval = 24 * time.Hour
    nodeReapPeriod   = 2 * time.Hour
    // considering a cluster with > 20 nodes and a drain speed of 100 msg/s
    // the following is roughly 1 minute
    maxQueueLenBroadcastOnSync = 500
)

type logWriter struct{}

func (l *logWriter) Write(p []byte) (int, error) {
    str := string(p)
    str = strings.TrimSuffix(str, "\n")

    switch {
    case strings.HasPrefix(str, "[WARN] "):
        str = strings.TrimPrefix(str, "[WARN] ")
        log.G(context.TODO()).Warn(str)
    case strings.HasPrefix(str, "[DEBUG] "):
        str = strings.TrimPrefix(str, "[DEBUG] ")
        log.G(context.TODO()).Debug(str)
    case strings.HasPrefix(str, "[INFO] "):
        str = strings.TrimPrefix(str, "[INFO] ")
        log.G(context.TODO()).Info(str)
    case strings.HasPrefix(str, "[ERR] "):
        str = strings.TrimPrefix(str, "[ERR] ")
        log.G(context.TODO()).Warn(str)
    }

    return len(p), nil
}

// SetKey adds a new key to the key ring
func (nDB *NetworkDB) SetKey(key []byte) {
    log.G(context.TODO()).Debugf("Adding key %.5s", hex.EncodeToString(key))
    nDB.Lock()
    defer nDB.Unlock()
    for _, dbKey := range nDB.config.Keys {
        if bytes.Equal(key, dbKey) {
            return
        }
    }
    nDB.config.Keys = append(nDB.config.Keys, key)
    if nDB.keyring != nil {
        nDB.keyring.AddKey(key)
    }
}

// SetPrimaryKey sets the given key as the primary key. This should have
// been added apriori through SetKey
func (nDB *NetworkDB) SetPrimaryKey(key []byte) {
    log.G(context.TODO()).Debugf("Primary Key %.5s", hex.EncodeToString(key))
    nDB.RLock()
    defer nDB.RUnlock()
    for _, dbKey := range nDB.config.Keys {
        if bytes.Equal(key, dbKey) {
            if nDB.keyring != nil {
                nDB.keyring.UseKey(dbKey)
            }
            break
        }
    }
}

// RemoveKey removes a key from the key ring. The key being removed
// can't be the primary key
func (nDB *NetworkDB) RemoveKey(key []byte) {
    log.G(context.TODO()).Debugf("Remove Key %.5s", hex.EncodeToString(key))
    nDB.Lock()
    defer nDB.Unlock()
    for i, dbKey := range nDB.config.Keys {
        if bytes.Equal(key, dbKey) {
            nDB.config.Keys = append(nDB.config.Keys[:i], nDB.config.Keys[i+1:]...)
            if nDB.keyring != nil {
                nDB.keyring.RemoveKey(dbKey)
            }
            break
        }
    }
}

func (nDB *NetworkDB) clusterInit() error {
    nDB.lastStatsTimestamp = time.Now()
    nDB.lastHealthTimestamp = nDB.lastStatsTimestamp

    config := memberlist.DefaultLANConfig()
    config.Name = nDB.config.NodeID
    config.BindAddr = nDB.config.BindAddr
    config.AdvertiseAddr = nDB.config.AdvertiseAddr
    config.UDPBufferSize = nDB.config.PacketBufferSize

    if nDB.config.BindPort != 0 {
        config.BindPort = nDB.config.BindPort
    }

    config.ProtocolVersion = memberlist.ProtocolVersion2Compatible
    config.Delegate = &delegate{nDB: nDB}
    config.Events = &eventDelegate{nDB: nDB}
    // custom logger that does not add time or date, so they are not
    // duplicated by logrus
    config.Logger = golog.New(&logWriter{}, "", 0)

    var err error
    if len(nDB.config.Keys) > 0 {
        for i, key := range nDB.config.Keys {
            log.G(context.TODO()).Debugf("Encryption key %d: %.5s", i+1, hex.EncodeToString(key))
        }
        nDB.keyring, err = memberlist.NewKeyring(nDB.config.Keys, nDB.config.Keys[0])
        if err != nil {
            return err
        }
        config.Keyring = nDB.keyring
    }

    nDB.networkBroadcasts = &memberlist.TransmitLimitedQueue{
        NumNodes: func() int {
            nDB.RLock()
            num := len(nDB.nodes)
            nDB.RUnlock()
            return num
        },
        RetransmitMult: config.RetransmitMult,
    }

    nDB.nodeBroadcasts = &memberlist.TransmitLimitedQueue{
        NumNodes: func() int {
            nDB.RLock()
            num := len(nDB.nodes)
            nDB.RUnlock()
            return num
        },
        RetransmitMult: config.RetransmitMult,
    }

    mlist, err := memberlist.Create(config)
    if err != nil {
        return fmt.Errorf("failed to create memberlist: %v", err)
    }

    nDB.ctx, nDB.cancelCtx = context.WithCancel(context.Background())
    nDB.memberlist = mlist

    for _, trigger := range []struct {
        interval time.Duration
        fn       func()
    }{
        {reapPeriod, nDB.reapState},
        {config.GossipInterval, nDB.gossip},
        {config.PushPullInterval, nDB.bulkSyncTables},
        {retryInterval, nDB.reconnectNode},
        {nodeReapPeriod, nDB.reapDeadNode},
        {nDB.config.rejoinClusterInterval, nDB.rejoinClusterBootStrap},
    } {
        t := time.NewTicker(trigger.interval)
        go nDB.triggerFunc(trigger.interval, t.C, trigger.fn)
        nDB.tickers = append(nDB.tickers, t)
    }

    return nil
}

func (nDB *NetworkDB) retryJoin(ctx context.Context, members []string) {
    t := time.NewTicker(retryInterval)
    defer t.Stop()

    for {
        select {
        case <-t.C:
            if _, err := nDB.memberlist.Join(members); err != nil {
                log.G(ctx).Errorf("Failed to join memberlist %s on retry: %v", members, err)
                continue
            }
            if err := nDB.sendNodeEvent(NodeEventTypeJoin); err != nil {
                log.G(ctx).Errorf("failed to send node join on retry: %v", err)
                continue
            }
            return
        case <-ctx.Done():
            return
        }
    }
}

func (nDB *NetworkDB) clusterJoin(members []string) error {
    mlist := nDB.memberlist

    if _, err := mlist.Join(members); err != nil {
        // In case of failure, we no longer need to explicitly call retryJoin.
        // rejoinClusterBootStrap, which runs every nDB.config.rejoinClusterInterval,
        // will retryJoin for nDB.config.rejoinClusterDuration.
        return fmt.Errorf("could not join node to memberlist: %v", err)
    }

    if err := nDB.sendNodeEvent(NodeEventTypeJoin); err != nil {
        return fmt.Errorf("failed to send node join: %v", err)
    }

    return nil
}

func (nDB *NetworkDB) clusterLeave() error {
    mlist := nDB.memberlist

    if err := nDB.sendNodeEvent(NodeEventTypeLeave); err != nil {
        log.G(context.TODO()).Errorf("failed to send node leave: %v", err)
    }

    if err := mlist.Leave(time.Second); err != nil {
        return err
    }

    // cancel the context
    nDB.cancelCtx()

    for _, t := range nDB.tickers {
        t.Stop()
    }

    return mlist.Shutdown()
}

func (nDB *NetworkDB) triggerFunc(stagger time.Duration, C <-chan time.Time, f func()) {
    // Use a random stagger to avoid synchronizing
    randStagger := time.Duration(uint64(rnd.Int63()) % uint64(stagger)) //nolint:gosec // gosec complains about the use of rand here. It should be fine.
    select {
    case <-time.After(randStagger):
    case <-nDB.ctx.Done():
        return
    }
    for {
        select {
        case <-C:
            f()
        case <-nDB.ctx.Done():
            return
        }
    }
}

func (nDB *NetworkDB) reapDeadNode() {
    nDB.Lock()
    defer nDB.Unlock()
    for _, nodeMap := range []map[string]*node{
        nDB.failedNodes,
        nDB.leftNodes,
    } {
        for id, n := range nodeMap {
            if n.reapTime > nodeReapPeriod {
                n.reapTime -= nodeReapPeriod
                continue
            }
            log.G(context.TODO()).Debugf("Garbage collect node %v", n.Name)
            delete(nodeMap, id)
        }
    }
}

// rejoinClusterBootStrap is called periodically to check if all bootStrap nodes are active in the cluster,
// if not, call the cluster join to merge 2 separate clusters that are formed when all managers
// stopped/started at the same time
func (nDB *NetworkDB) rejoinClusterBootStrap() {
    nDB.RLock()
    if len(nDB.bootStrapIP) == 0 {
        nDB.RUnlock()
        return
    }

    myself, ok := nDB.nodes[nDB.config.NodeID]
    if !ok {
        nDB.RUnlock()
        log.G(context.TODO()).Warnf("rejoinClusterBootstrap unable to find local node info using ID:%v", nDB.config.NodeID)
        return
    }
    bootStrapIPs := make([]string, 0, len(nDB.bootStrapIP))
    for _, bootIP := range nDB.bootStrapIP {
        // botostrap IPs are usually IP:port from the Join
        var bootstrapIP net.IP
        ipStr, _, err := net.SplitHostPort(bootIP)
        if err != nil {
            // try to parse it as an IP with port
            // Note this seems to be the case for swarm that do not specify any port
            ipStr = bootIP
        }
        bootstrapIP = net.ParseIP(ipStr)
        if bootstrapIP != nil {
            for _, node := range nDB.nodes {
                if node.Addr.Equal(bootstrapIP) && !node.Addr.Equal(myself.Addr) {
                    // One of the bootstrap nodes (and not myself) is part of the cluster, return
                    nDB.RUnlock()
                    return
                }
            }
            bootStrapIPs = append(bootStrapIPs, bootIP)
        }
    }
    nDB.RUnlock()
    if len(bootStrapIPs) == 0 {
        // this will also avoid to call the Join with an empty list erasing the current bootstrap ip list
        log.G(context.TODO()).Debug("rejoinClusterBootStrap did not find any valid IP")
        return
    }
    // None of the bootStrap nodes are in the cluster, call memberlist join
    log.G(context.TODO()).Debugf("rejoinClusterBootStrap, calling cluster join with bootStrap %v", bootStrapIPs)
    ctx, cancel := context.WithTimeout(nDB.ctx, nDB.config.rejoinClusterDuration)
    defer cancel()
    nDB.retryJoin(ctx, bootStrapIPs)
}

func (nDB *NetworkDB) reconnectNode() {
    nDB.RLock()
    if len(nDB.failedNodes) == 0 {
        nDB.RUnlock()
        return
    }

    nodes := make([]*node, 0, len(nDB.failedNodes))
    for _, n := range nDB.failedNodes {
        nodes = append(nodes, n)
    }
    nDB.RUnlock()

    node := nodes[randomOffset(len(nodes))]
    addr := net.UDPAddr{IP: node.Addr, Port: int(node.Port)}

    if _, err := nDB.memberlist.Join([]string{addr.String()}); err != nil {
        return
    }

    if err := nDB.sendNodeEvent(NodeEventTypeJoin); err != nil {
        return
    }

    log.G(context.TODO()).Debugf("Initiating bulk sync with node %s after reconnect", node.Name)
    nDB.bulkSync([]string{node.Name}, true)
}

// For timing the entry deletion in the reaper APIs that doesn't use monotonic clock
// source (time.Now, Sub etc.) should be avoided. Hence we use reapTime in every
// entry which is set initially to reapInterval and decremented by reapPeriod every time
// the reaper runs. NOTE nDB.reapTableEntries updates the reapTime with a readlock. This
// is safe as long as no other concurrent path touches the reapTime field.
func (nDB *NetworkDB) reapState() {
    // The reapTableEntries leverage the presence of the network so garbage collect entries first
    nDB.reapTableEntries()
    nDB.reapNetworks()
}

func (nDB *NetworkDB) reapNetworks() {
    nDB.Lock()
    for _, nn := range nDB.networks {
        for id, n := range nn {
            if n.leaving {
                if n.reapTime <= 0 {
                    delete(nn, id)
                    continue
                }
                n.reapTime -= reapPeriod
            }
        }
    }
    nDB.Unlock()
}

func (nDB *NetworkDB) reapTableEntries() {
    var nodeNetworks []string
    // This is best effort, if the list of network changes will be picked up in the next cycle
    nDB.RLock()
    for nid := range nDB.networks[nDB.config.NodeID] {
        nodeNetworks = append(nodeNetworks, nid)
    }
    nDB.RUnlock()

    cycleStart := time.Now()
    // In order to avoid blocking the database for a long time, apply the garbage collection logic by network
    // The lock is taken at the beginning of the cycle and the deletion is inline
    for _, nid := range nodeNetworks {
        nDB.Lock()
        nDB.indexes[byNetwork].Root().WalkPrefix([]byte("/"+nid), func(path []byte, v interface{}) bool {
            // timeCompensation compensate in case the lock took some time to be released
            timeCompensation := time.Since(cycleStart)
            entry, ok := v.(*entry)
            if !ok || !entry.deleting {
                return false
            }

            // In this check we are adding an extra 1 second to guarantee that when the number is truncated to int32 to fit the packet
            // for the tableEvent the number is always strictly > 1 and never 0
            if entry.reapTime > reapPeriod+timeCompensation+time.Second {
                entry.reapTime -= reapPeriod + timeCompensation
                return false
            }

            params := strings.Split(string(path[1:]), "/")
            nid := params[0]
            tname := params[1]
            key := params[2]

            okTable, okNetwork := nDB.deleteEntry(nid, tname, key)
            if !okTable {
                log.G(context.TODO()).Errorf("Table tree delete failed, entry with key:%s does not exist in the table:%s network:%s", key, tname, nid)
            }
            if !okNetwork {
                log.G(context.TODO()).Errorf("Network tree delete failed, entry with key:%s does not exist in the network:%s table:%s", key, nid, tname)
            }

            return false
        })
        nDB.Unlock()
    }
}

func (nDB *NetworkDB) gossip() {
    networkNodes := make(map[string][]string)
    nDB.RLock()
    thisNodeNetworks := nDB.networks[nDB.config.NodeID]
    for nid := range thisNodeNetworks {
        networkNodes[nid] = nDB.networkNodes[nid]
    }
    printStats := time.Since(nDB.lastStatsTimestamp) >= nDB.config.StatsPrintPeriod
    printHealth := time.Since(nDB.lastHealthTimestamp) >= nDB.config.HealthPrintPeriod
    nDB.RUnlock()

    if printHealth {
        healthScore := nDB.memberlist.GetHealthScore()
        if healthScore != 0 {
            log.G(context.TODO()).Warnf("NetworkDB stats %v(%v) - healthscore:%d (connectivity issues)", nDB.config.Hostname, nDB.config.NodeID, healthScore)
        }
        nDB.lastHealthTimestamp = time.Now()
    }

    for nid, nodes := range networkNodes {
        mNodes := nDB.mRandomNodes(3, nodes)
        bytesAvail := nDB.config.PacketBufferSize - compoundHeaderOverhead

        nDB.RLock()
        network, ok := thisNodeNetworks[nid]
        nDB.RUnlock()
        if !ok || network == nil {
            // It is normal for the network to be removed
            // between the time we collect the network
            // attachments of this node and processing
            // them here.
            continue
        }

        broadcastQ := network.tableBroadcasts

        if broadcastQ == nil {
            log.G(context.TODO()).Errorf("Invalid broadcastQ encountered while gossiping for network %s", nid)
            continue
        }

        msgs := broadcastQ.GetBroadcasts(compoundOverhead, bytesAvail)
        // Collect stats and print the queue info, note this code is here also to have a view of the queues empty
        network.qMessagesSent.Add(int64(len(msgs)))
        if printStats {
            msent := network.qMessagesSent.Swap(0)
            log.G(context.TODO()).Infof("NetworkDB stats %v(%v) - netID:%s leaving:%t netPeers:%d entries:%d Queue qLen:%d netMsg/s:%d",
                nDB.config.Hostname, nDB.config.NodeID,
                nid, network.leaving, broadcastQ.NumNodes(), network.entriesNumber.Load(), broadcastQ.NumQueued(),
                msent/int64((nDB.config.StatsPrintPeriod/time.Second)))
        }

        if len(msgs) == 0 {
            continue
        }

        // Create a compound message
        compound := makeCompoundMessage(msgs)

        for _, node := range mNodes {
            nDB.RLock()
            mnode := nDB.nodes[node]
            nDB.RUnlock()

            if mnode == nil {
                break
            }

            // Send the compound message
            if err := nDB.memberlist.SendBestEffort(&mnode.Node, compound); err != nil {
                log.G(context.TODO()).Errorf("Failed to send gossip to %s: %s", mnode.Addr, err)
            }
        }
    }
    // Reset the stats
    if printStats {
        nDB.lastStatsTimestamp = time.Now()
    }
}

func (nDB *NetworkDB) bulkSyncTables() {
    var networks []string
    nDB.RLock()
    for nid, network := range nDB.networks[nDB.config.NodeID] {
        if network.leaving {
            continue
        }
        networks = append(networks, nid)
    }
    nDB.RUnlock()

    for {
        if len(networks) == 0 {
            break
        }

        nid := networks[0]
        networks = networks[1:]

        nDB.RLock()
        nodes := nDB.networkNodes[nid]
        nDB.RUnlock()

        // No peer nodes on this network. Move on.
        if len(nodes) == 0 {
            continue
        }

        completed, err := nDB.bulkSync(nodes, false)
        if err != nil {
            log.G(context.TODO()).Errorf("periodic bulk sync failure for network %s: %v", nid, err)
            continue
        }

        // Remove all the networks for which we have
        // successfully completed bulk sync in this iteration.
        updatedNetworks := make([]string, 0, len(networks))
        for _, nid := range networks {
            var found bool
            for _, completedNid := range completed {
                if nid == completedNid {
                    found = true
                    break
                }
            }

            if !found {
                updatedNetworks = append(updatedNetworks, nid)
            }
        }

        networks = updatedNetworks
    }
}

func (nDB *NetworkDB) bulkSync(nodes []string, all bool) ([]string, error) {
    if !all {
        // Get 2 random nodes. 2nd node will be tried if the bulk sync to
        // 1st node fails.
        nodes = nDB.mRandomNodes(2, nodes)
    }

    if len(nodes) == 0 {
        return nil, nil
    }

    var err error
    var networks []string
    var success bool
    for _, node := range nodes {
        if node == nDB.config.NodeID {
            continue
        }
        log.G(context.TODO()).Debugf("%v(%v): Initiating bulk sync with node %v", nDB.config.Hostname, nDB.config.NodeID, node)
        networks = nDB.findCommonNetworks(node)
        err = nDB.bulkSyncNode(networks, node, true)
        if err != nil {
            err = fmt.Errorf("bulk sync to node %s failed: %v", node, err)
            log.G(context.TODO()).Warn(err.Error())
        } else {
            // bulk sync succeeded
            success = true
            // if its periodic bulksync stop after the first successful sync
            if !all {
                break
            }
        }
    }

    if success {
        // if at least one node sync succeeded
        return networks, nil
    }

    return nil, err
}

// Bulk sync all the table entries belonging to a set of networks to a
// single peer node. It can be unsolicited or can be in response to an
// unsolicited bulk sync
func (nDB *NetworkDB) bulkSyncNode(networks []string, node string, unsolicited bool) error {
    var msgs [][]byte

    var unsolMsg string
    if unsolicited {
        unsolMsg = "unsolicited"
    }

    log.G(context.TODO()).Debugf("%v(%v): Initiating %s bulk sync for networks %v with node %s",
        nDB.config.Hostname, nDB.config.NodeID, unsolMsg, networks, node)

    nDB.RLock()
    mnode := nDB.nodes[node]
    if mnode == nil {
        nDB.RUnlock()
        return nil
    }

    for _, nid := range networks {
        nDB.indexes[byNetwork].Root().WalkPrefix([]byte("/"+nid), func(path []byte, v interface{}) bool {
            entry, ok := v.(*entry)
            if !ok {
                return false
            }

            eType := TableEventTypeCreate
            if entry.deleting {
                eType = TableEventTypeDelete
            }

            params := strings.Split(string(path[1:]), "/")
            tEvent := TableEvent{
                Type:      eType,
                LTime:     entry.ltime,
                NodeName:  entry.node,
                NetworkID: nid,
                TableName: params[1],
                Key:       params[2],
                Value:     entry.value,
                // The duration in second is a float that below would be truncated
                ResidualReapTime: int32(entry.reapTime.Seconds()),
            }

            msg, err := encodeMessage(MessageTypeTableEvent, &tEvent)
            if err != nil {
                log.G(context.TODO()).Errorf("Encode failure during bulk sync: %#v", tEvent)
                return false
            }

            msgs = append(msgs, msg)
            return false
        })
    }
    nDB.RUnlock()

    // Create a compound message
    compound := makeCompoundMessage(msgs)

    bsm := BulkSyncMessage{
        LTime:       nDB.tableClock.Time(),
        Unsolicited: unsolicited,
        NodeName:    nDB.config.NodeID,
        Networks:    networks,
        Payload:     compound,
    }

    buf, err := encodeMessage(MessageTypeBulkSync, &bsm)
    if err != nil {
        return fmt.Errorf("failed to encode bulk sync message: %v", err)
    }

    nDB.Lock()
    ch := make(chan struct{})
    nDB.bulkSyncAckTbl[node] = ch
    nDB.Unlock()

    err = nDB.memberlist.SendReliable(&mnode.Node, buf)
    if err != nil {
        nDB.Lock()
        delete(nDB.bulkSyncAckTbl, node)
        nDB.Unlock()

        return fmt.Errorf("failed to send a TCP message during bulk sync: %v", err)
    }

    // Wait on a response only if it is unsolicited.
    if unsolicited {
        startTime := time.Now()
        t := time.NewTimer(30 * time.Second)
        select {
        case <-t.C:
            log.G(context.TODO()).Errorf("Bulk sync to node %s timed out", node)
        case <-ch:
            log.G(context.TODO()).Debugf("%v(%v): Bulk sync to node %s took %s", nDB.config.Hostname, nDB.config.NodeID, node, time.Since(startTime))
        }
        t.Stop()
    }

    return nil
}

// Returns a random offset between 0 and n
func randomOffset(n int) int {
    if n == 0 {
        return 0
    }

    val, err := rand.Int(rand.Reader, big.NewInt(int64(n)))
    if err != nil {
        log.G(context.TODO()).Errorf("Failed to get a random offset: %v", err)
        return 0
    }

    return int(val.Int64())
}

// mRandomNodes is used to select up to m random nodes. It is possible
// that less than m nodes are returned.
func (nDB *NetworkDB) mRandomNodes(m int, nodes []string) []string {
    n := len(nodes)
    mNodes := make([]string, 0, m)
OUTER:
    // Probe up to 3*n times, with large n this is not necessary
    // since k << n, but with small n we want search to be
    // exhaustive
    for i := 0; i < 3*n && len(mNodes) < m; i++ {
        // Get random node
        idx := randomOffset(n)
        node := nodes[idx]

        if node == nDB.config.NodeID {
            continue
        }

        // Check if we have this node already
        for j := 0; j < len(mNodes); j++ {
            if node == mNodes[j] {
                continue OUTER
            }
        }

        // Append the node
        mNodes = append(mNodes, node)
    }

    return mNodes
}