Showing 1,372 of 1,372 total issues
Function send_project_index
has a Cognitive Complexity of 11 (exceeds 5 allowed). Consider refactoring. Open
def send_project_index(environ, start_response, parent_dir=None,
env_paths=None):
req = Request(environ, start_response)
loadpaths = [pkg_resources.resource_filename('trac', 'templates')]
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function insert
has a Cognitive Complexity of 11 (exceeds 5 allowed). Consider refactoring. Open
def insert(self, when=None):
"""Add ticket to database.
"""
assert not self.exists, 'Cannot insert an existing ticket'
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function get_logo_data
has a Cognitive Complexity of 11 (exceeds 5 allowed). Consider refactoring. Open
def get_logo_data(self, href, abs_href=None):
# TODO: Possibly, links to 'common/' could use chrome.htdocs_location
logo = {}
logo_src = self.logo_src
if logo_src:
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function read
has a Cognitive Complexity of 11 (exceeds 5 allowed). Consider refactoring. Open
def read(self, sock):
"""Read and decode a Record from a socket."""
try:
header, length = self._recvall(sock, FCGI_HEADER_LEN)
except:
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function shortrev
has a Cognitive Complexity of 11 (exceeds 5 allowed). Consider refactoring. Open
def shortrev(self, rev, min_len=7):
def get_shortrev(rev, min_len):
"""try to shorten sha id"""
#try to emulate the following:
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function history_relative_rev
has a Cognitive Complexity of 11 (exceeds 5 allowed). Consider refactoring. Open
def history_relative_rev(self, sha, rel_pos):
def get_history_relative_rev(sha, rel_pos):
rev_dict = self.get_commits()
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function main
has a Cognitive Complexity of 11 (exceeds 5 allowed). Consider refactoring. Open
def main():
args = sys.argv[1:]
if not args:
sys.stderr.write('Usage: %s algorithm files...\n' % sys.argv[0])
return 2
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function do_upgrade
has a Cognitive Complexity of 11 (exceeds 5 allowed). Consider refactoring. Open
def do_upgrade(env, ver, cursor):
"""
1. Zero-pad Subversion revision numbers in the cache.
2. Remove wiki-macros directory.
"""
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function _check_quickjump
has a Cognitive Complexity of 11 (exceeds 5 allowed). Consider refactoring. Open
def _check_quickjump(self, req, noquickjump, kwd):
"""Look for search shortcuts"""
# Source quickjump FIXME: delegate to ISearchSource.search_quickjump
quickjump_href = None
if kwd[0] == '/':
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function get_repositories
has a Cognitive Complexity of 11 (exceeds 5 allowed). Consider refactoring. Open
def get_repositories(self):
"""Retrieve repositories specified in a `projects_list` file."""
if not self.projects_list:
return
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function _cat_file_reader
has a Cognitive Complexity of 11 (exceeds 5 allowed). Consider refactoring. Open
def _cat_file_reader(self, kind, sha):
with self.__cat_file_pipe_lock:
if self.__cat_file_pipe is None:
self.__cat_file_pipe = self.repo.cat_file_batch()
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function main
has a Cognitive Complexity of 11 (exceeds 5 allowed). Consider refactoring. Open
def main():
parser = argparse.ArgumentParser(description="""\
If no flags are given, both jinja and html checks will be performed.
An alternative usage is to run the tool via make, i.e. `make jinja`,
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function request
has 31 lines of code (exceeds 25 allowed). Consider refactoring. Open
function request() {
if (!updating) {
var new_values = form.serializeArray();
if (values_changed(new_values)) {
values = new_values;
Function paintLogGraph
has 31 lines of code (exceeds 25 allowed). Consider refactoring. Open
$.paintLogGraph = function(graph, canvas) {
var ctx = canvas.getContext('2d');
ctx.scale(-canvas.width / graph.columns,
canvas.height / graph.vertices.length);
ctx.translate(-graph.columns + 0.5, 0.5)
Function __init__
has 31 lines of code (exceeds 25 allowed). Consider refactoring. Open
def __init__(self, env, report=None, constraints=None, cols=None,
order=None, desc=0, group=None, groupdesc=0, verbose=0,
rows=None, page=None, max=None, format=None):
self.env = env
self.id = report # if not None, it's the corresponding saved query
Function process_request
has 30 lines of code (exceeds 25 allowed). Consider refactoring. Open
def process_request(self, req):
presel = req.args.get('preselected')
if presel and (presel + '/').startswith(req.href.browser() + '/'):
req.redirect(presel)
Identical blocks of code found in 2 locations. Consider refactoring. Open
lines[sepIndex] = lines[sepIndex]
.replace("{1}", oldOffset).replace("{2}", oldLength)
.replace("{3}", newOffset).replace("{4}", newLength)
.replace("{5}", title);
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 59.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Identical blocks of code found in 2 locations. Consider refactoring. Open
lines[sepIndex] = lines[sepIndex]
.replace("{1}", oldOffset).replace("{2}", oldLength)
.replace("{3}", newOffset).replace("{4}", newLength)
.replace("{5}", title);
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 59.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Identical blocks of code found in 2 locations. Consider refactoring. Open
def __setitem__(self, name, value):
if name not in self.fields:
raise KeyError(name)
self.values[name] = value
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 40.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Identical blocks of code found in 2 locations. Consider refactoring. Open
def __setitem__(self, name, value):
if name not in self.fields:
raise KeyError(name)
self.values[name] = value
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 40.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76