Showing 4,903 of 4,903 total issues
Similar blocks of code found in 2 locations. Consider refactoring. Open
when :filesystem
begin
FileUtils.chmod(0o666 & ~File.umask, attachment.path(style)) unless attachment.path(style).nil?
rescue Errno::ENOENT
Rails.logger.warn "Tried to change permission on non-existent file #{attachment.path(style)}"
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 31.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Identical blocks of code found in 2 locations. Consider refactoring. Open
def needs_different_geometry?
(options[:geometry] && @current_geometry.width != @target_geometry.width && @current_geometry.height != @target_geometry.height) ||
(options[:pixels] && @current_geometry.width * @current_geometry.height > options[:pixels])
end
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 31.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
when :filesystem
begin
FileUtils.chmod(0o600 & ~File.umask, attachment.path(style)) unless attachment.path(style).nil?
rescue Errno::ENOENT
Rails.logger.warn "Tried to change permission on non-existent file #{attachment.path(style)}"
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 31.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
begin
@account.header_remote_url = image_url('image') || '' unless skip_download?
@account.header = nil if @account.header_remote_url.blank?
rescue Mastodon::UnexpectedResponseError, *Mastodon::HTTP_CONNECTION_ERRORS
RedownloadHeaderWorker.perform_in(rand(30..600).seconds, @account.id)
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 31.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
begin
@account.avatar_remote_url = image_url('icon') || '' unless skip_download?
@account.avatar = nil if @account.avatar_remote_url.blank?
rescue Mastodon::UnexpectedResponseError, *Mastodon::HTTP_CONNECTION_ERRORS
RedownloadAvatarWorker.perform_in(rand(30..600).seconds, @account.id)
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 31.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Function createFilterStatus
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
export const createFilterStatus = (params, onSuccess, onFail) => (dispatch) => {
dispatch(createFilterStatusRequest());
api().post(`/api/v2/filters/${params.filter_id}/statuses`, params).then(response => {
dispatch(createFilterStatusSuccess(response.data));
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function render
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
render () {
const { poll, intl } = this.props;
const { revealed, expired } = this.state;
if (!poll) {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function shouldComponentUpdate
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
shouldComponentUpdate (nextProps, nextState) {
const isUnrendered = !this.state.isIntersecting && (this.state.isHidden || this.props.cachedHeight);
const willBeUnrendered = !nextState.isIntersecting && (nextState.isHidden || nextProps.cachedHeight);
if (!!isUnrendered !== !!willBeUnrendered) {
// If we're going from rendered to unrendered (or vice versa) then update
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function render
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
render () {
const { status, width, height, visible } = this.props;
const mediaAttachments = status.get('media_attachments');
const language = status.getIn(['language', 'translation']) || status.get('language') || this.props.lang;
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function textForScreenReader
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
export const textForScreenReader = (intl, status, rebloggedByText = false, expanded = false) => {
const displayName = status.getIn(['account', 'display_name']);
const spoilerText = status.getIn(['translation', 'spoiler_text']) || status.get('spoiler_text');
const contentHtml = status.getIn(['translation', 'contentHtml']) || status.get('contentHtml');
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function focusChild
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
const focusChild = (node, index, alignTop) => {
const element = node.querySelector(`article:nth-of-type(${index + 1}) .focusable`);
if (element) {
if (alignTop && node.scrollTop > element.offsetTop) {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function _selectChild
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
_selectChild (index, align_top) {
const container = this.node.node;
const element = container.querySelector(`article:nth-of-type(${index + 1}) .focusable`);
if (element) {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function getSnapshotBeforeUpdate
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
getSnapshotBeforeUpdate (prevProps) {
const someItemInserted = Children.count(prevProps.children) > 0 &&
Children.count(prevProps.children) < Children.count(this.props.children) &&
this.getFirstChildKey(prevProps) !== this.getFirstChildKey(this.props);
const pendingChanged = (prevProps.numPending > 0) !== (this.props.numPending > 0);
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function resizeFile
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
const resizeFile = (inputFile) => new Promise((resolve) => {
if (!inputFile.type.match(/image.*/) || inputFile.type === 'image/gif') {
resolve(inputFile);
return;
}
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function textAtCursorMatchesToken
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
const textAtCursorMatchesToken = (str, caretPosition, searchTokens) => {
let word;
let left = str.slice(0, caretPosition).search(/\S+$/);
let right = str.slice(caretPosition).search(/\s/);
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function createFilter
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
export const createFilter = (params, onSuccess, onFail) => (dispatch) => {
dispatch(createFilterRequest());
api().post('/api/v2/filters', params).then(response => {
dispatch(createFilterSuccess(response.data));
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function render
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
render () {
const { emoji } = this.props;
let url;
if (emoji.custom) {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function submitReport
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
export const submitReport = (params, onSuccess, onFail) => (dispatch) => {
dispatch(submitReportRequest());
api().post('/api/v1/reports', params).then(response => {
dispatch(submitReportSuccess(response.data));
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function textAtCursorMatchesToken
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
const textAtCursorMatchesToken = (str, caretPosition) => {
let word;
let left = str.slice(0, caretPosition).search(/\S+$/);
let right = str.slice(caretPosition).search(/\s/);
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function getImageUrl
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
const getImageUrl = inputFile => new Promise((resolve, reject) => {
if (window.URL && URL.createObjectURL) {
try {
resolve(URL.createObjectURL(inputFile));
} catch (error) {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"