itachi1706/CheesecakeUtilities

View on GitHub

Showing 517 of 532 total issues

Add explicit curly braces to avoid dangling else.
Open

                            else return trueString;

The dangling else problem appears when nested if/else statements are written without curly braces. In this case, else is associated with the nearest if but that is not always obvious and sometimes the indentation can also be misleading.

This rules reports else statements that are difficult to understand, because they are inside nested if statements without curly braces.

Adding curly braces can generally make the code clearer (see rule {rule:java:S121} ), and in this situation of dangling else, it really clarifies the intention of the code.

Noncompliant Code Example

 if (a)
   if (b)
     d++;
 else     // Noncompliant, is the "else" associated with "if(a)" or "if (b)"? (the answer is "if(b)")
   e++;

Compliant Solution

 if (a) {
   if (b) {
     d++;
   }
 } else { // Compliant, there is no doubt the "else" is associated with "if(a)"
   e++;
 }

See

Add a private constructor to hide the implicit public one.
Open

class Utils {

Utility classes, which are collections of static members, are not meant to be instantiated. Even abstract utility classes, which can be extended, should not have public constructors.

Java adds an implicit public constructor to every class which does not define at least one explicitly. Hence, at least one non-public constructor should be defined.

Noncompliant Code Example

class StringUtils { // Noncompliant

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Compliant Solution

class StringUtils { // Compliant

  private StringUtils() {
    throw new IllegalStateException("Utility class");
  }

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Exceptions

When class contains public static void main(String[] args) method it is not considered as utility class and will be ignored by this rule.

Make the enclosing method "static" or remove this set.
Open

                useAppColor = true;

Correctly updating a static field from a non-static method is tricky to get right and could easily lead to bugs if there are multiple class instances and/or multiple threads in play. Ideally, static fields are only updated from synchronized static methods.

This rule raises an issue each time a static field is updated from a non-static method.

Noncompliant Code Example

public class MyClass {

  private static int count = 0;

  public void doSomething() {
    //...
    count++;  // Noncompliant
  }
}

Define a constant instead of duplicating this literal "Timer" 4 times.
Open

            LogHelper.i("Timer", "Timer started");

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Use indentation to denote the code conditionally executed by this "if".
Open

            if (gameBoardCheck[0][col].equals(value) && gameBoardCheck[0][col].equals(gameBoardCheck[1][col])
            && gameBoardCheck[1][col].equals(gameBoardCheck[2][col]))

In the absence of enclosing curly braces, the line immediately after a conditional is the one that is conditionally executed. By both convention and good practice, such lines are indented. In the absence of both curly braces and indentation the intent of the original programmer is entirely unclear and perhaps not actually what is executed. Additionally, such code is highly likely to be confusing to maintainers.

Noncompliant Code Example

if (condition)  // Noncompliant
doTheThing();

doTheOtherThing();
somethingElseEntirely();

foo();

Compliant Solution

if (condition)
  doTheThing();

doTheOtherThing();
somethingElseEntirely();

foo();

Make the enclosing method "static" or remove this set.
Open

        timerDuration = 0;

Correctly updating a static field from a non-static method is tricky to get right and could easily lead to bugs if there are multiple class instances and/or multiple threads in play. Ideally, static fields are only updated from synchronized static methods.

This rule raises an issue each time a static field is updated from a non-static method.

Noncompliant Code Example

public class MyClass {

  private static int count = 0;

  public void doSomething() {
    //...
    count++;  // Noncompliant
  }
}

Make the enclosing method "static" or remove this set.
Open

            turnNo++;

Correctly updating a static field from a non-static method is tricky to get right and could easily lead to bugs if there are multiple class instances and/or multiple threads in play. Ideally, static fields are only updated from synchronized static methods.

This rule raises an issue each time a static field is updated from a non-static method.

Noncompliant Code Example

public class MyClass {

  private static int count = 0;

  public void doSomething() {
    //...
    count++;  // Noncompliant
  }
}

Save and re-use this "Random".
Open

        Random random = new Random();

Creating a new Random object each time a random value is needed is inefficient and may produce numbers which are not random depending on the JDK. For better efficiency and randomness, create a single Random, then store, and reuse it.

The Random() constructor tries to set the seed with a distinct value every time. However there is no guarantee that the seed will be random or even uniformly distributed. Some JDK will use the current time as seed, which makes the generated numbers not random at all.

This rule finds cases where a new Random is created each time a method is invoked and assigned to a local random variable.

Noncompliant Code Example

public void doSomethingCommon() {
  Random rand = new Random();  // Noncompliant; new instance created with each invocation
  int rValue = rand.nextInt();
  //...

Compliant Solution

private Random rand = SecureRandom.getInstanceStrong();  // SecureRandom is preferred to Random

public void doSomethingCommon() {
  int rValue = this.rand.nextInt();
  //...

Exceptions

A class which uses a Random in its constructor or in a static main function and nowhere else will be ignored by this rule.

See

Make the enclosing method "static" or remove this set.
Open

            currentPlayer = TicTacToeValues.O;

Correctly updating a static field from a non-static method is tricky to get right and could easily lead to bugs if there are multiple class instances and/or multiple threads in play. Ideally, static fields are only updated from synchronized static methods.

This rule raises an issue each time a static field is updated from a non-static method.

Noncompliant Code Example

public class MyClass {

  private static int count = 0;

  public void doSomething() {
    //...
    count++;  // Noncompliant
  }
}

Merge this if statement with the enclosing one.
Open

            if (resultCode == RESULT_CANCELED) {

Merging collapsible if statements increases the code's readability.

Noncompliant Code Example

if (file != null) {
  if (file.isFile() || file.isDirectory()) {
    /* ... */
  }
}

Compliant Solution

if (file != null && isFileOrDirectory(file)) {
  /* ... */
}

private static boolean isFileOrDirectory(File file) {
  return file.isFile() || file.isDirectory();
}

Refactor this method to reduce its Cognitive Complexity from 22 to the 15 allowed.
Open

    private void runSafetyNetTest(@NonNull final Context context) {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

This block of commented-out lines of code should be removed.
Open

// Licensed under the Apache License, Version 2.0 (the "License");

Programmers should not comment out code as it bloats programs and reduces readability.

Unused code should be deleted and can be retrieved from source control history if required.

Use "java.nio.file.Files#delete" here for better messages on error conditions.
Open

        return !folder.isDirectory() && folder.delete() && folder.mkdir();

When java.io.File#delete fails, this boolean method simply returns false with no indication of the cause. On the other hand, when java.nio.file.Files#delete fails, this void method returns one of a series of exception types to better indicate the cause of the failure. And since more information is generally better in a debugging situation, java.nio.file.Files#delete is the preferred option.

Noncompliant Code Example

public void cleanUp(Path path) {
  File file = new File(path);
  if (!file.delete()) {  // Noncompliant
    //...
  }
}

Compliant Solution

public void cleanUp(Path path) throws NoSuchFileException, DirectoryNotEmptyException, IOException {
  Files.delete(path);
}

Use try-with-resources or close this "FileOutputStream" in a "finally" clause.
Open

        OutputStream out = new FileOutputStream(outFile);

Connections, streams, files, and other classes that implement the Closeable interface or its super-interface, AutoCloseable, needs to be closed after use. Further, that close call must be made in a finally block otherwise an exception could keep the call from being made. Preferably, when class implements AutoCloseable, resource should be created using "try-with-resources" pattern and will be closed automatically.

Failure to properly close resources will result in a resource leak which could bring first the application and then perhaps the box the application is on to their knees.

Noncompliant Code Example

private void readTheFile() throws IOException {
  Path path = Paths.get(this.fileName);
  BufferedReader reader = Files.newBufferedReader(path, this.charset);
  // ...
  reader.close();  // Noncompliant
  // ...
  Files.lines("input.txt").forEach(System.out::println); // Noncompliant: The stream needs to be closed
}

private void doSomething() {
  OutputStream stream = null;
  try {
    for (String property : propertyList) {
      stream = new FileOutputStream("myfile.txt");  // Noncompliant
      // ...
    }
  } catch (Exception e) {
    // ...
  } finally {
    stream.close();  // Multiple streams were opened. Only the last is closed.
  }
}

Compliant Solution

private void readTheFile(String fileName) throws IOException {
    Path path = Paths.get(fileName);
    try (BufferedReader reader = Files.newBufferedReader(path, StandardCharsets.UTF_8)) {
      reader.readLine();
      // ...
    }
    // ..
    try (Stream<String> input = Files.lines("input.txt"))  {
      input.forEach(System.out::println);
    }
}

private void doSomething() {
  OutputStream stream = null;
  try {
    stream = new FileOutputStream("myfile.txt");
    for (String property : propertyList) {
      // ...
    }
  } catch (Exception e) {
    // ...
  } finally {
    stream.close();
  }
}

Exceptions

Instances of the following classes are ignored by this rule because close has no effect:

  • java.io.ByteArrayOutputStream
  • java.io.ByteArrayInputStream
  • java.io.CharArrayReader
  • java.io.CharArrayWriter
  • java.io.StringReader
  • java.io.StringWriter

Java 7 introduced the try-with-resources statement, which implicitly closes Closeables. All resources opened in a try-with-resources statement are ignored by this rule.

try (BufferedReader br = new BufferedReader(new FileReader(fileName))) {
  //...
}
catch ( ... ) {
  //...
}

See

A "NullPointerException" could be thrown; "requestedPermissions" is nullable here.
Open

            creator.addView(generateSingleColumn("Permissions (" + requestedPermissions.length + ")", permissionList));

A reference to null should never be dereferenced/accessed. Doing so will cause a NullPointerException to be thrown. At best, such an exception will cause abrupt program termination. At worst, it could expose debugging information that would be useful to an attacker, or it could allow an attacker to bypass security measures.

Note that when they are present, this rule takes advantage of @CheckForNull and @Nonnull annotations defined in JSR-305 to understand which values are and are not nullable except when @Nonnull is used on the parameter to equals, which by contract should always work with null.

Noncompliant Code Example

@CheckForNull
String getName(){...}

public boolean isNameEmpty() {
  return getName().length() == 0; // Noncompliant; the result of getName() could be null, but isn't null-checked
}
Connection conn = null;
Statement stmt = null;
try{
  conn = DriverManager.getConnection(DB_URL,USER,PASS);
  stmt = conn.createStatement();
  // ...

}catch(Exception e){
  e.printStackTrace();
}finally{
  stmt.close();   // Noncompliant; stmt could be null if an exception was thrown in the try{} block
  conn.close();  // Noncompliant; conn could be null if an exception was thrown
}
private void merge(@Nonnull Color firstColor, @Nonnull Color secondColor){...}

public  void append(@CheckForNull Color color) {
    merge(currentColor, color);  // Noncompliant; color should be null-checked because merge(...) doesn't accept nullable parameters
}
void paint(Color color) {
  if(color == null) {
    System.out.println("Unable to apply color " + color.toString());  // Noncompliant; NullPointerException will be thrown
    return;
  }
  ...
}

See

A "NullPointerException" could be thrown; "activities" is nullable here.
Open

        if (!activityList.isEmpty()) creator.addView(generateSingleColumn("Activities (" + activities.length + ")", activityList));

A reference to null should never be dereferenced/accessed. Doing so will cause a NullPointerException to be thrown. At best, such an exception will cause abrupt program termination. At worst, it could expose debugging information that would be useful to an attacker, or it could allow an attacker to bypass security measures.

Note that when they are present, this rule takes advantage of @CheckForNull and @Nonnull annotations defined in JSR-305 to understand which values are and are not nullable except when @Nonnull is used on the parameter to equals, which by contract should always work with null.

Noncompliant Code Example

@CheckForNull
String getName(){...}

public boolean isNameEmpty() {
  return getName().length() == 0; // Noncompliant; the result of getName() could be null, but isn't null-checked
}
Connection conn = null;
Statement stmt = null;
try{
  conn = DriverManager.getConnection(DB_URL,USER,PASS);
  stmt = conn.createStatement();
  // ...

}catch(Exception e){
  e.printStackTrace();
}finally{
  stmt.close();   // Noncompliant; stmt could be null if an exception was thrown in the try{} block
  conn.close();  // Noncompliant; conn could be null if an exception was thrown
}
private void merge(@Nonnull Color firstColor, @Nonnull Color secondColor){...}

public  void append(@CheckForNull Color color) {
    merge(currentColor, color);  // Noncompliant; color should be null-checked because merge(...) doesn't accept nullable parameters
}
void paint(Color color) {
  if(color == null) {
    System.out.println("Unable to apply color " + color.toString());  // Noncompliant; NullPointerException will be thrown
    return;
  }
  ...
}

See

Refactor this method to reduce its Cognitive Complexity from 22 to the 15 allowed.
Open

    private void generatePackageList() {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Define a constant instead of duplicating this literal "IpptScore" 3 times.
Open

        LogHelper.i("IpptScore", "Gender: " + gender);

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Add a nested comment explaining why this method is empty, throw an UnsupportedOperationException or complete the implementation.
Open

            public void onNothingSelected(AdapterView<?> parent) {

There are several reasons for a method not to have a method body:

  • It is an unintentional omission, and should be fixed to prevent an unexpected behavior in production.
  • It is not yet, or never will be, supported. In this case an UnsupportedOperationException should be thrown.
  • The method is an intentionally-blank override. In this case a nested comment should explain the reason for the blank override.

Noncompliant Code Example

public void doSomething() {
}

public void doSomethingElse() {
}

Compliant Solution

@Override
public void doSomething() {
  // Do nothing because of X and Y.
}

@Override
public void doSomethingElse() {
  throw new UnsupportedOperationException();
}

Exceptions

Default (no-argument) constructors are ignored when there are other constructors in the class, as are empty methods in abstract classes.

public abstract class Animal {
  void speak() {  // default implementation ignored
  }
}

Add a default case to this switch.
Open

        switch (exercise.toLowerCase()) {

The requirement for a final default clause is defensive programming. The clause should either take appropriate action, or contain a suitable comment as to why no action is taken.

Noncompliant Code Example

switch (param) {  //missing default clause
  case 0:
    doSomething();
    break;
  case 1:
    doSomethingElse();
    break;
}

switch (param) {
  default: // default clause should be the last one
    error();
    break;
  case 0:
    doSomething();
    break;
  case 1:
    doSomethingElse();
    break;
}

Compliant Solution

switch (param) {
  case 0:
    doSomething();
    break;
  case 1:
    doSomethingElse();
    break;
  default:
    error();
    break;
}

Exceptions

If the switch parameter is an Enum and if all the constants of this enum are used in the case statements, then no default clause is expected.

Example:

public enum Day {
    SUNDAY, MONDAY
}
...
switch(day) {
  case SUNDAY:
    doSomething();
    break;
  case MONDAY:
    doSomethingElse();
    break;
}

See

Severity
Category
Status
Source
Language