itachi1706/SingBuses

View on GitHub

Showing 126 of 136 total issues

A "NullPointerException" could be thrown; "locationManager" is nullable here.
Open

            isGPSEnabled = locationManager.isProviderEnabled(LocationManager.GPS_PROVIDER);

A reference to null should never be dereferenced/accessed. Doing so will cause a NullPointerException to be thrown. At best, such an exception will cause abrupt program termination. At worst, it could expose debugging information that would be useful to an attacker, or it could allow an attacker to bypass security measures.

Note that when they are present, this rule takes advantage of @CheckForNull and @Nonnull annotations defined in JSR-305 to understand which values are and are not nullable except when @Nonnull is used on the parameter to equals, which by contract should always work with null.

Noncompliant Code Example

@CheckForNull
String getName(){...}

public boolean isNameEmpty() {
  return getName().length() == 0; // Noncompliant; the result of getName() could be null, but isn't null-checked
}
Connection conn = null;
Statement stmt = null;
try{
  conn = DriverManager.getConnection(DB_URL,USER,PASS);
  stmt = conn.createStatement();
  // ...

}catch(Exception e){
  e.printStackTrace();
}finally{
  stmt.close();   // Noncompliant; stmt could be null if an exception was thrown in the try{} block
  conn.close();  // Noncompliant; conn could be null if an exception was thrown
}
private void merge(@Nonnull Color firstColor, @Nonnull Color secondColor){...}

public  void append(@CheckForNull Color color) {
    merge(currentColor, color);  // Noncompliant; color should be null-checked because merge(...) doesn't accept nullable parameters
}
void paint(Color color) {
  if(color == null) {
    System.out.println("Unable to apply color " + color.toString());  // Noncompliant; NullPointerException will be thrown
    return;
  }
  ...
}

See

Add a nested comment explaining why this method is empty, throw an UnsupportedOperationException or complete the implementation.
Open

    public void onStatusChanged(String provider, int status, Bundle extras) {

There are several reasons for a method not to have a method body:

  • It is an unintentional omission, and should be fixed to prevent an unexpected behavior in production.
  • It is not yet, or never will be, supported. In this case an UnsupportedOperationException should be thrown.
  • The method is an intentionally-blank override. In this case a nested comment should explain the reason for the blank override.

Noncompliant Code Example

public void doSomething() {
}

public void doSomethingElse() {
}

Compliant Solution

@Override
public void doSomething() {
  // Do nothing because of X and Y.
}

@Override
public void doSomethingElse() {
  throw new UnsupportedOperationException();
}

Exceptions

Default (no-argument) constructors are ignored when there are other constructors in the class, as are empty methods in abstract classes.

public abstract class Animal {
  void speak() {  // default implementation ignored
  }
}

Refactor this method to reduce its Cognitive Complexity from 33 to the 15 allowed.
Open

    public Location getLocation() {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

A "NullPointerException" could be thrown; "buses" is nullable here.
Open

        buses.setLayoutManager(linearLayoutManager);

A reference to null should never be dereferenced/accessed. Doing so will cause a NullPointerException to be thrown. At best, such an exception will cause abrupt program termination. At worst, it could expose debugging information that would be useful to an attacker, or it could allow an attacker to bypass security measures.

Note that when they are present, this rule takes advantage of @CheckForNull and @Nonnull annotations defined in JSR-305 to understand which values are and are not nullable except when @Nonnull is used on the parameter to equals, which by contract should always work with null.

Noncompliant Code Example

@CheckForNull
String getName(){...}

public boolean isNameEmpty() {
  return getName().length() == 0; // Noncompliant; the result of getName() could be null, but isn't null-checked
}
Connection conn = null;
Statement stmt = null;
try{
  conn = DriverManager.getConnection(DB_URL,USER,PASS);
  stmt = conn.createStatement();
  // ...

}catch(Exception e){
  e.printStackTrace();
}finally{
  stmt.close();   // Noncompliant; stmt could be null if an exception was thrown in the try{} block
  conn.close();  // Noncompliant; conn could be null if an exception was thrown
}
private void merge(@Nonnull Color firstColor, @Nonnull Color secondColor){...}

public  void append(@CheckForNull Color color) {
    merge(currentColor, color);  // Noncompliant; color should be null-checked because merge(...) doesn't accept nullable parameters
}
void paint(Color color) {
  if(color == null) {
    System.out.println("Unable to apply color " + color.toString());  // Noncompliant; NullPointerException will be thrown
    return;
  }
  ...
}

See

Add a private constructor to hide the implicit public one.
Open

public class CommonEnums {

Utility classes, which are collections of static members, are not meant to be instantiated. Even abstract utility classes, which can be extended, should not have public constructors.

Java adds an implicit public constructor to every class which does not define at least one explicitly. Hence, at least one non-public constructor should be defined.

Noncompliant Code Example

class StringUtils { // Noncompliant

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Compliant Solution

class StringUtils { // Compliant

  private StringUtils() {
    throw new IllegalStateException("Utility class");
  }

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Exceptions

When class contains public static void main(String[] args) method it is not considered as utility class and will be ignored by this rule.

Refactor this method to reduce its Cognitive Complexity from 27 to the 15 allowed.
Open

    public Integer doInBackground(String... routes) {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Severity
Category
Status
Source
Language