Showing 4,293 of 4,293 total issues
Avoid using static access to class '\Kontentblocks\Utils_K' in method 'validate'. Open
_K::error( $this->moduleattrs['class'] . ' not found.' );
- Read upRead up
- Exclude checks
StaticAccess
Since: 1.4.0
Static access causes unexchangeable dependencies to other classes and leads to hard to test code. Avoid using static access at all costs and instead inject dependencies through the constructor. The only case when static access is acceptable is when used for factory methods.
Example
class Foo
{
public function bar()
{
Bar::baz();
}
}
Source https://phpmd.org/rules/cleancode.html#staticaccess
The method create uses an else expression. Else clauses are basically not necessary and you can simplify the code by not using them. Open
} else {
$this->environment->getStorage()->saveModule( $this->getNewId(), $this->prepareFromModule() );
}
- Read upRead up
- Exclude checks
ElseExpression
Since: 1.4.0
An if expression with an else branch is basically not necessary. You can rewrite the conditions in a way that the else clause is not necessary and the code becomes simpler to read. To achieve this, use early return statements, though you may need to split the code it several smaller methods. For very simple assignments you could also use the ternary operations.
Example
class Foo
{
public function bar($flag)
{
if ($flag) {
// one branch
} else {
// another branch
}
}
}
Source https://phpmd.org/rules/cleancode.html#elseexpression
Avoid using static access to class '\Kontentblocks\Utils\Utilities' in method 'save'. Open
$merged = Utilities::arrayMergeRecursive($new, $old);
- Read upRead up
- Exclude checks
StaticAccess
Since: 1.4.0
Static access causes unexchangeable dependencies to other classes and leads to hard to test code. Avoid using static access at all costs and instead inject dependencies through the constructor. The only case when static access is acceptable is when used for factory methods.
Example
class Foo
{
public function bar()
{
Bar::baz();
}
}
Source https://phpmd.org/rules/cleancode.html#staticaccess
Avoid using static access to class '\Kontentblocks\Utils\Utilities' in method 'form'. Open
Utilities::hiddenEditor();
- Read upRead up
- Exclude checks
StaticAccess
Since: 1.4.0
Static access causes unexchangeable dependencies to other classes and leads to hard to test code. Avoid using static access at all costs and instead inject dependencies through the constructor. The only case when static access is acceptable is when used for factory methods.
Example
class Foo
{
public function bar()
{
Bar::baz();
}
}
Source https://phpmd.org/rules/cleancode.html#staticaccess
Avoid using static access to class '\Kontentblocks\Utils\Utilities' in method 'metaBox'. Open
Utilities::hiddenEditor();
- Read upRead up
- Exclude checks
StaticAccess
Since: 1.4.0
Static access causes unexchangeable dependencies to other classes and leads to hard to test code. Avoid using static access at all costs and instead inject dependencies through the constructor. The only case when static access is acceptable is when used for factory methods.
Example
class Foo
{
public function bar()
{
Bar::baz();
}
}
Source https://phpmd.org/rules/cleancode.html#staticaccess
Avoid using static access to class '\Kontentblocks\Utils_K' in method '__construct'. Open
_K::info("Post Panel Repository created");
- Read upRead up
- Exclude checks
StaticAccess
Since: 1.4.0
Static access causes unexchangeable dependencies to other classes and leads to hard to test code. Avoid using static access at all costs and instead inject dependencies through the constructor. The only case when static access is acceptable is when used for factory methods.
Example
class Foo
{
public function bar()
{
Bar::baz();
}
}
Source https://phpmd.org/rules/cleancode.html#staticaccess
The method filterForPost() has a Cyclomatic Complexity of 16. The configured cyclomatic complexity threshold is 10. Open
public function filterForPost(PostEnvironment $environment)
{
$pageTemplate = $environment->getPageTemplate();
$postType = $environment->getPostType();
- Read upRead up
- Exclude checks
CyclomaticComplexity
Since: 0.1
Complexity is determined by the number of decision points in a method plus one for the method entry. The decision points are 'if', 'while', 'for', and 'case labels'. Generally, 1-4 is low complexity, 5-7 indicates moderate complexity, 8-10 is high complexity, and 11+ is very high complexity.
Example
// Cyclomatic Complexity = 11
class Foo {
1 public function example() {
2 if ($a == $b) {
3 if ($a1 == $b1) {
fiddle();
4 } elseif ($a2 == $b2) {
fiddle();
} else {
fiddle();
}
5 } elseif ($c == $d) {
6 while ($c == $d) {
fiddle();
}
7 } elseif ($e == $f) {
8 for ($n = 0; $n < $h; $n++) {
fiddle();
}
} else {
switch ($z) {
9 case 1:
fiddle();
break;
10 case 2:
fiddle();
break;
11 case 3:
fiddle();
break;
default:
fiddle();
break;
}
}
}
}
Source https://phpmd.org/rules/codesize.html#cyclomaticcomplexity
The method save() has a Cyclomatic Complexity of 10. The configured cyclomatic complexity threshold is 10. Open
public function save($data, $old)
{
if (is_null($data)) {
return $old;
}
- Read upRead up
- Exclude checks
CyclomaticComplexity
Since: 0.1
Complexity is determined by the number of decision points in a method plus one for the method entry. The decision points are 'if', 'while', 'for', and 'case labels'. Generally, 1-4 is low complexity, 5-7 indicates moderate complexity, 8-10 is high complexity, and 11+ is very high complexity.
Example
// Cyclomatic Complexity = 11
class Foo {
1 public function example() {
2 if ($a == $b) {
3 if ($a1 == $b1) {
fiddle();
4 } elseif ($a2 == $b2) {
fiddle();
} else {
fiddle();
}
5 } elseif ($c == $d) {
6 while ($c == $d) {
fiddle();
}
7 } elseif ($e == $f) {
8 for ($n = 0; $n < $h; $n++) {
fiddle();
}
} else {
switch ($z) {
9 case 1:
fiddle();
break;
10 case 2:
fiddle();
break;
11 case 3:
fiddle();
break;
default:
fiddle();
break;
}
}
}
}
Source https://phpmd.org/rules/codesize.html#cyclomaticcomplexity
The method connect() has a Cyclomatic Complexity of 17. The configured cyclomatic complexity threshold is 10. Open
public function connect($classname, $args)
{
$setting = $args['settings']['connect'];
$postTypes = get_post_types_by_support('kontentblocks');
if (empty($setting)) {
- Read upRead up
- Exclude checks
CyclomaticComplexity
Since: 0.1
Complexity is determined by the number of decision points in a method plus one for the method entry. The decision points are 'if', 'while', 'for', and 'case labels'. Generally, 1-4 is low complexity, 5-7 indicates moderate complexity, 8-10 is high complexity, and 11+ is very high complexity.
Example
// Cyclomatic Complexity = 11
class Foo {
1 public function example() {
2 if ($a == $b) {
3 if ($a1 == $b1) {
fiddle();
4 } elseif ($a2 == $b2) {
fiddle();
} else {
fiddle();
}
5 } elseif ($c == $d) {
6 while ($c == $d) {
fiddle();
}
7 } elseif ($e == $f) {
8 for ($n = 0; $n < $h; $n++) {
fiddle();
}
} else {
switch ($z) {
9 case 1:
fiddle();
break;
10 case 2:
fiddle();
break;
11 case 3:
fiddle();
break;
default:
fiddle();
break;
}
}
}
}
Source https://phpmd.org/rules/codesize.html#cyclomaticcomplexity
The method action() has a Cyclomatic Complexity of 11. The configured cyclomatic complexity threshold is 10. Open
protected static function action(Request $request)
{
$data = $request->request->filter('data', array(), FILTER_DEFAULT);
// bail if essentials are missing
- Read upRead up
- Exclude checks
CyclomaticComplexity
Since: 0.1
Complexity is determined by the number of decision points in a method plus one for the method entry. The decision points are 'if', 'while', 'for', and 'case labels'. Generally, 1-4 is low complexity, 5-7 indicates moderate complexity, 8-10 is high complexity, and 11+ is very high complexity.
Example
// Cyclomatic Complexity = 11
class Foo {
1 public function example() {
2 if ($a == $b) {
3 if ($a1 == $b1) {
fiddle();
4 } elseif ($a2 == $b2) {
fiddle();
} else {
fiddle();
}
5 } elseif ($c == $d) {
6 while ($c == $d) {
fiddle();
}
7 } elseif ($e == $f) {
8 for ($n = 0; $n < $h; $n++) {
fiddle();
}
} else {
switch ($z) {
9 case 1:
fiddle();
break;
10 case 2:
fiddle();
break;
11 case 3:
fiddle();
break;
default:
fiddle();
break;
}
}
}
}
Source https://phpmd.org/rules/codesize.html#cyclomaticcomplexity
The method save() has a Cyclomatic Complexity of 11. The configured cyclomatic complexity threshold is 10. Open
public function save( $data, $old )
{
if (is_null( $data )) {
return $old;
- Read upRead up
- Exclude checks
CyclomaticComplexity
Since: 0.1
Complexity is determined by the number of decision points in a method plus one for the method entry. The decision points are 'if', 'while', 'for', and 'case labels'. Generally, 1-4 is low complexity, 5-7 indicates moderate complexity, 8-10 is high complexity, and 11+ is very high complexity.
Example
// Cyclomatic Complexity = 11
class Foo {
1 public function example() {
2 if ($a == $b) {
3 if ($a1 == $b1) {
fiddle();
4 } elseif ($a2 == $b2) {
fiddle();
} else {
fiddle();
}
5 } elseif ($c == $d) {
6 while ($c == $d) {
fiddle();
}
7 } elseif ($e == $f) {
8 for ($n = 0; $n < $h; $n++) {
fiddle();
}
} else {
switch ($z) {
9 case 1:
fiddle();
break;
10 case 2:
fiddle();
break;
11 case 3:
fiddle();
break;
default:
fiddle();
break;
}
}
}
}
Source https://phpmd.org/rules/codesize.html#cyclomaticcomplexity
maybeRemoveAreas accesses the super-global variable $_GET. Open
private function maybeRemoveAreas()
{
if ($this->isDirty && isset($_GET['kb-clean-me-up']) && $_GET['kb-clean-me-up'] === 'yeah') {
foreach ($this->removedAreas as $id) {
$posts = get_posts(
- Read upRead up
- Exclude checks
Superglobals
Since: 0.2
Accessing a super-global variable directly is considered a bad practice. These variables should be encapsulated in objects that are provided by a framework, for instance.
Example
class Foo {
public function bar() {
$name = $_POST['foo'];
}
}
Source
The method save() has a Cyclomatic Complexity of 13. The configured cyclomatic complexity threshold is 10. Open
public function save($data, $old)
{
if (is_null($data)) {
return $old;
}
- Read upRead up
- Exclude checks
CyclomaticComplexity
Since: 0.1
Complexity is determined by the number of decision points in a method plus one for the method entry. The decision points are 'if', 'while', 'for', and 'case labels'. Generally, 1-4 is low complexity, 5-7 indicates moderate complexity, 8-10 is high complexity, and 11+ is very high complexity.
Example
// Cyclomatic Complexity = 11
class Foo {
1 public function example() {
2 if ($a == $b) {
3 if ($a1 == $b1) {
fiddle();
4 } elseif ($a2 == $b2) {
fiddle();
} else {
fiddle();
}
5 } elseif ($c == $d) {
6 while ($c == $d) {
fiddle();
}
7 } elseif ($e == $f) {
8 for ($n = 0; $n < $h; $n++) {
fiddle();
}
} else {
switch ($z) {
9 case 1:
fiddle();
break;
10 case 2:
fiddle();
break;
11 case 3:
fiddle();
break;
default:
fiddle();
break;
}
}
}
}
Source https://phpmd.org/rules/codesize.html#cyclomaticcomplexity
The method save() has a Cyclomatic Complexity of 13. The configured cyclomatic complexity threshold is 10. Open
public function save($new, $old)
{
$flatFields = $this->flattenFields();
if (is_null($new)) {
return $old;
- Read upRead up
- Exclude checks
CyclomaticComplexity
Since: 0.1
Complexity is determined by the number of decision points in a method plus one for the method entry. The decision points are 'if', 'while', 'for', and 'case labels'. Generally, 1-4 is low complexity, 5-7 indicates moderate complexity, 8-10 is high complexity, and 11+ is very high complexity.
Example
// Cyclomatic Complexity = 11
class Foo {
1 public function example() {
2 if ($a == $b) {
3 if ($a1 == $b1) {
fiddle();
4 } elseif ($a2 == $b2) {
fiddle();
} else {
fiddle();
}
5 } elseif ($c == $d) {
6 while ($c == $d) {
fiddle();
}
7 } elseif ($e == $f) {
8 for ($n = 0; $n < $h; $n++) {
fiddle();
}
} else {
switch ($z) {
9 case 1:
fiddle();
break;
10 case 2:
fiddle();
break;
11 case 3:
fiddle();
break;
default:
fiddle();
break;
}
}
}
}
Source https://phpmd.org/rules/codesize.html#cyclomaticcomplexity
maybeRemoveAreas accesses the super-global variable $_GET. Open
private function maybeRemoveAreas()
{
if ($this->isDirty && isset($_GET['kb-clean-me-up']) && $_GET['kb-clean-me-up'] === 'yeah') {
foreach ($this->removedAreas as $id) {
$posts = get_posts(
- Read upRead up
- Exclude checks
Superglobals
Since: 0.2
Accessing a super-global variable directly is considered a bad practice. These variables should be encapsulated in objects that are provided by a framework, for instance.
Example
class Foo {
public function bar() {
$name = $_POST['foo'];
}
}
Source
postTypeMessages accesses the super-global variable $_GET. Open
public function postTypeMessages($messages)
{
$post = get_post();
$messages['kb-gmd'] = array(
- Read upRead up
- Exclude checks
Superglobals
Since: 0.2
Accessing a super-global variable directly is considered a bad practice. These variables should be encapsulated in objects that are provided by a framework, for instance.
Example
class Foo {
public function bar() {
$name = $_POST['foo'];
}
}
Source
handleUpload accesses the super-global variable $_REQUEST. Open
public static function handleUpload()
{
header( 'Content-Type: text/html; charset=UTF-8' );
if (!defined( 'DOING_AJAX' )) {
- Read upRead up
- Exclude checks
Superglobals
Since: 0.2
Accessing a super-global variable directly is considered a bad practice. These variables should be encapsulated in objects that are provided by a framework, for instance.
Example
class Foo {
public function bar() {
$name = $_POST['foo'];
}
}
Source
auth accesses the super-global variable $_POST. Open
private function auth($postId)
{
// verify if this is an auto save routine.
// If it is our form has not been submitted, so we dont want to do anything
if (empty($_POST)) {
- Read upRead up
- Exclude checks
Superglobals
Since: 0.2
Accessing a super-global variable directly is considered a bad practice. These variables should be encapsulated in objects that are provided by a framework, for instance.
Example
class Foo {
public function bar() {
$name = $_POST['foo'];
}
}
Source
auth accesses the super-global variable $_POST. Open
private function auth($postId)
{
// verify if this is an auto save routine.
// If it is our form has not been submitted, so we dont want to do anything
if (empty($_POST)) {
- Read upRead up
- Exclude checks
Superglobals
Since: 0.2
Accessing a super-global variable directly is considered a bad practice. These variables should be encapsulated in objects that are provided by a framework, for instance.
Example
class Foo {
public function bar() {
$name = $_POST['foo'];
}
}
Source
auth accesses the super-global variable $_POST. Open
private function auth($postId)
{
// verify if this is an auto save routine.
// If it is our form has not been submitted, so we dont want to do anything
if (empty($_POST)) {
- Read upRead up
- Exclude checks
Superglobals
Since: 0.2
Accessing a super-global variable directly is considered a bad practice. These variables should be encapsulated in objects that are provided by a framework, for instance.
Example
class Foo {
public function bar() {
$name = $_POST['foo'];
}
}