Function __call__
has a Cognitive Complexity of 63 (exceeds 5 allowed). Consider refactoring. Open
def __call__(self, question=None):
# use custom question, or fallback to the default one.
if question is not None:
question = str(question)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Cyclomatic complexity is too high in method __call__. (38) Open
@isolate_readline_context
def __call__(self, question=None):
# use custom question, or fallback to the default one.
if question is not None:
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Cyclomatic complexity is too high in class Expect. (20) Open
class Expect: # pylint: disable=too-few-public-methods
"""Expect some user input, and provide response related to the
instance configuration variables.
It instantiates an input query, according the configured
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Function __init__
has 7 arguments (exceeds 4 allowed). Consider refactoring. Open
def __init__(self, expect=None, question='', timeout=0,
Method "__init__" has 8 parameters, which is greater than the 7 authorized. Open
def __init__(self, expect=None, question='', timeout=0,
default=None, case_sensitive=False,
append_choices=True, skip_interrupt=True):
- Read upRead up
- Exclude checks
A long parameter list can indicate that a new structure should be created to wrap the numerous parameters or that the function is doing too many things.
Noncompliant Code Example
With a maximum number of 4 parameters:
def do_something(param1, param2, param3, param4, param5): ...
Compliant Solution
def do_something(param1, param2, param3, param4): ...
Rename field "expect" Open
self.expect = expect
- Read upRead up
- Exclude checks
It's confusing to have a class member with the same name (case differences aside) as its enclosing class. This is particularly so when you consider the common practice of naming a class instance for the class itself.
Best practice dictates that any field or member with the same name as the enclosing class be renamed to be more descriptive of the particular aspect of the class it represents or holds.
Noncompliant Code Example
class Foo: foo = '' def getFoo(self): ... foo = Foo() foo.getFoo() # what does this return?
Compliant Solution
class Foo: name = '' def getName(self): ... foo = Foo() foo.getName()
Refactor this function to reduce its Cognitive Complexity from 66 to the 15 allowed. Open
def __call__(self, question=None):
- Read upRead up
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a function is to understand. Functions with high Cognitive Complexity will be difficult to maintain.
See
At least two spaces before inline comment Open
class Expect: # pylint: disable=too-few-public-methods
- Read upRead up
- Exclude checks
Separate inline comments by at least two spaces.
An inline comment is a comment on the same line as a statement.
Inline comments should be separated by at least two spaces from the
statement. They should start with a # and a single space.
Each line of a block comment starts with a # and a single space
(unless it is indented text inside the comment).
Okay: x = x + 1 # Increment x
Okay: x = x + 1 # Increment x
Okay: # Block comment
E261: x = x + 1 # Increment x
E262: x = x + 1 #Increment x
E262: x = x + 1 # Increment x
E265: #Block comment
E266: ### Block comment