oramics/dsp-kit

View on GitHub

Showing 150 of 150 total issues

Unexpected use of comma operator.
Open

    while (h = h >> 1, !((r ^= h) & h)) ;
Severity: Minor
Found in packages/rfft/lib/reverse-table.js by eslint

Disallow Use of the Comma Operator (no-sequences)

The comma operator includes multiple expressions where only one is expected. It evaluates each operand from left to right and returns the value of the last operand. However, this frequently obscures side effects, and its use is often an accident. Here are some examples of sequences:

var a = (3, 5); // a = 5

a = b += 5, a + b;

while (a = next(), a && a.length);

(0, eval)("doSomething();");

Rule Details

This rule forbids the use of the comma operator, with the following exceptions:

  • In the initialization or update portions of a for statement.
  • If the expression sequence is explicitly wrapped in parentheses.

Examples of incorrect code for this rule:

/*eslint no-sequences: "error"*/

foo = doSomething(), val;

0, eval("doSomething();");

do {} while (doSomething(), !!test);

for (; doSomething(), !!test; );

if (doSomething(), !!test);

switch (val = foo(), val) {}

while (val = foo(), val < 42);

with (doSomething(), val) {}

Examples of correct code for this rule:

/*eslint no-sequences: "error"*/

foo = (doSomething(), val);

(0, eval)("doSomething();");

do {} while ((doSomething(), !!test));

for (i = 0, j = 10; i < j; i++, j--);

if ((doSomething(), !!test));

switch ((val = foo(), val)) {}

while ((val = foo(), val < 42));

// with ((doSomething(), val)) {}

When Not To Use It

Disable this rule if sequence expressions with the comma operator are acceptable. Source: http://eslint.org/docs/rules/

'a' was used before it was defined.
Open

  const a = val(a)
Severity: Minor
Found in packages/signal/lib/comparasion.js by eslint

Disallow Early Use (no-use-before-define)

In JavaScript, prior to ES6, variable and function declarations are hoisted to the top of a scope, so it's possible to use identifiers before their formal declarations in code. This can be confusing and some believe it is best to always declare variables and functions before using them.

In ES6, block-level bindings (let and const) introduce a "temporal dead zone" where a ReferenceError will be thrown with any attempt to access the variable before its declaration.

Rule Details

This rule will warn when it encounters a reference to an identifier that has not yet been declared.

Examples of incorrect code for this rule:

/*eslint no-use-before-define: "error"*/
/*eslint-env es6*/

alert(a);
var a = 10;

f();
function f() {}

function g() {
    return b;
}
var b = 1;

// With blockBindings: true
{
    alert(c);
    let c = 1;
}

Examples of correct code for this rule:

/*eslint no-use-before-define: "error"*/
/*eslint-env es6*/

var a;
a = 10;
alert(a);

function f() {}
f(1);

var b = 1;
function g() {
    return b;
}

// With blockBindings: true
{
    let C;
    c++;
}

Options

{
    "no-use-before-define": ["error", { "functions": true, "classes": true }]
}
  • functions (boolean) - The flag which shows whether or not this rule checks function declarations. If this is true, this rule warns every reference to a function before the function declaration. Otherwise, ignores those references. Function declarations are hoisted, so it's safe. Default is true.
  • classes (boolean) - The flag which shows whether or not this rule checks class declarations of upper scopes. If this is true, this rule warns every reference to a class before the class declaration. Otherwise, ignores those references if the declaration is in upper function scopes. Class declarations are not hoisted, so it might be danger. Default is true.
  • variables (boolean) - This flag determines whether or not the rule checks variable declarations in upper scopes. If this is true, the rule warns every reference to a variable before the variable declaration. Otherwise, the rule ignores a reference if the declaration is in an upper scope, while still reporting the reference if it's in the same scope as the declaration. Default is true.

This rule accepts "nofunc" string as an option. "nofunc" is the same as { "functions": false, "classes": true }.

functions

Examples of correct code for the { "functions": false } option:

/*eslint no-use-before-define: ["error", { "functions": false }]*/

f();
function f() {}

classes

Examples of incorrect code for the { "classes": false } option:

/*eslint no-use-before-define: ["error", { "classes": false }]*/
/*eslint-env es6*/

new A();
class A {
}

Examples of correct code for the { "classes": false } option:

/*eslint no-use-before-define: ["error", { "classes": false }]*/
/*eslint-env es6*/

function foo() {
    return new A();
}

class A {
}

variables

Examples of incorrect code for the { "variables": false } option:

/*eslint no-use-before-define: ["error", { "variables": false }]*/

console.log(foo);
var foo = 1;

Examples of correct code for the { "variables": false } option:

/*eslint no-use-before-define: ["error", { "variables": false }]*/

function baz() {
    console.log(foo);
}

var foo = 1;

Source: http://eslint.org/docs/rules/

Strings must use singlequote.
Open

const winFn = require("scijs-window-functions/hamming");
Severity: Minor
Found in packages/spectral-models/src/dft.js by eslint

enforce the consistent use of either backticks, double, or single quotes (quotes)

JavaScript allows you to define strings in one of three ways: double quotes, single quotes, and backticks (as of ECMAScript 6). For example:

/*eslint-env es6*/

var double = "double";
var single = 'single';
var backtick = `backtick`;    // ES6 only

Each of these lines creates a string and, in some cases, can be used interchangeably. The choice of how to define strings in a codebase is a stylistic one outside of template literals (which allow embedded of expressions to be interpreted).

Many codebases require strings to be defined in a consistent manner.

Rule Details

This rule enforces the consistent use of either backticks, double, or single quotes.

Options

This rule has two options, a string option and an object option.

String option:

  • "double" (default) requires the use of double quotes wherever possible
  • "single" requires the use of single quotes wherever possible
  • "backtick" requires the use of backticks wherever possible

Object option:

  • "avoidEscape": true allows strings to use single-quotes or double-quotes so long as the string contains a quote that would have to be escaped otherwise
  • "allowTemplateLiterals": true allows strings to use backticks

Deprecated: The object property avoid-escape is deprecated; please use the object property avoidEscape instead.

double

Examples of incorrect code for this rule with the default "double" option:

/*eslint quotes: ["error", "double"]*/

var single = 'single';
var unescaped = 'a string containing "double" quotes';

Examples of correct code for this rule with the default "double" option:

/*eslint quotes: ["error", "double"]*/
/*eslint-env es6*/

var double = "double";
var backtick = `back\ntick`;  // backticks are allowed due to newline
var backtick = tag`backtick`; // backticks are allowed due to tag

single

Examples of incorrect code for this rule with the "single" option:

/*eslint quotes: ["error", "single"]*/

var double = "double";
var unescaped = "a string containing 'single' quotes";

Examples of correct code for this rule with the "single" option:

/*eslint quotes: ["error", "single"]*/
/*eslint-env es6*/

var single = 'single';
var backtick = `back${x}tick`; // backticks are allowed due to substitution

backticks

Examples of incorrect code for this rule with the "backtick" option:

/*eslint quotes: ["error", "backtick"]*/

var single = 'single';
var double = "double";
var unescaped = 'a string containing `backticks`';

Examples of correct code for this rule with the "backtick" option:

/*eslint quotes: ["error", "backtick"]*/
/*eslint-env es6*/

var backtick = `backtick`;

avoidEscape

Examples of additional correct code for this rule with the "double", { "avoidEscape": true } options:

/*eslint quotes: ["error", "double", { "avoidEscape": true }]*/

var single = 'a string containing "double" quotes';

Examples of additional correct code for this rule with the "single", { "avoidEscape": true } options:

/*eslint quotes: ["error", "single", { "avoidEscape": true }]*/

var double = "a string containing 'single' quotes";

Examples of additional correct code for this rule with the "backtick", { "avoidEscape": true } options:

/*eslint quotes: ["error", "backtick", { "avoidEscape": true }]*/

var double = "a string containing `backtick` quotes"

allowTemplateLiterals

Examples of additional correct code for this rule with the "double", { "allowTemplateLiterals": true } options:

/*eslint quotes: ["error", "double", { "allowTemplateLiterals": true }]*/

var double = "double";
var double = `double`;

Examples of additional correct code for this rule with the "single", { "allowTemplateLiterals": true } options:

/*eslint quotes: ["error", "single", { "allowTemplateLiterals": true }]*/

var single = 'single';
var single = `single`;

When Not To Use It

If you do not need consistency in your string styles, you can safely disable this rule. Source: http://eslint.org/docs/rules/

Trailing spaces not allowed.
Open

 * using a fast fourier function. 
Severity: Minor
Found in packages/spectral-models/src/dft.js by eslint

disallow trailing whitespace at the end of lines (no-trailing-spaces)

Sometimes in the course of editing files, you can end up with extra whitespace at the end of lines. These whitespace differences can be picked up by source control systems and flagged as diffs, causing frustration for developers. While this extra whitespace causes no functional issues, many code conventions require that trailing spaces be removed before check-in.

Rule Details

This rule disallows trailing whitespace (spaces, tabs, and other Unicode whitespace characters) at the end of lines.

Examples of incorrect code for this rule:

/*eslint no-trailing-spaces: "error"*/

var foo = 0;//•••••
var baz = 5;//••
//•••••

Examples of correct code for this rule:

/*eslint no-trailing-spaces: "error"*/

var foo = 0;
var baz = 5;

Options

This rule has an object option:

  • "skipBlankLines": false (default) disallows trailing whitespace on empty lines
  • "skipBlankLines": true allows trailing whitespace on empty lines

skipBlankLines

Examples of correct code for this rule with the { "skipBlankLines": true } option:

/*eslint no-trailing-spaces: ["error", { "skipBlankLines": true }]*/

var foo = 0;
var baz = 5;
//•••••

Source: http://eslint.org/docs/rules/

Expected { after 'if' condition.
Open

  if (window.length !== size)
Severity: Minor
Found in packages/spectral-models/src/dft.js by eslint

Require Following Curly Brace Conventions (curly)

JavaScript allows the omission of curly braces when a block contains only one statement. However, it is considered by many to be best practice to never omit curly braces around blocks, even when they are optional, because it can lead to bugs and reduces code clarity. So the following:

if (foo) foo++;

Can be rewritten as:

if (foo) {
    foo++;
}

There are, however, some who prefer to only use braces when there is more than one statement to be executed.

Rule Details

This rule is aimed at preventing bugs and increasing code clarity by ensuring that block statements are wrapped in curly braces. It will warn when it encounters blocks that omit curly braces.

Options

all

Examples of incorrect code for the default "all" option:

/*eslint curly: "error"*/

if (foo) foo++;

while (bar)
    baz();

if (foo) {
    baz();
} else qux();

Examples of correct code for the default "all" option:

/*eslint curly: "error"*/

if (foo) {
    foo++;
}

while (bar) {
    baz();
}

if (foo) {
    baz();
} else {
    qux();
}

multi

By default, this rule warns whenever if, else, for, while, or do are used without block statements as their body. However, you can specify that block statements should be used only when there are multiple statements in the block and warn when there is only one statement in the block.

Examples of incorrect code for the "multi" option:

/*eslint curly: ["error", "multi"]*/

if (foo) {
    foo++;
}

if (foo) bar();
else {
    foo++;
}

while (true) {
    doSomething();
}

for (var i=0; i < items.length; i++) {
    doSomething();
}

Examples of correct code for the "multi" option:

/*eslint curly: ["error", "multi"]*/

if (foo) foo++;

else foo();

while (true) {
    doSomething();
    doSomethingElse();
}

multi-line

Alternatively, you can relax the rule to allow brace-less single-line if, else if, else, for, while, or do, while still enforcing the use of curly braces for other instances.

Examples of incorrect code for the "multi-line" option:

/*eslint curly: ["error", "multi-line"]*/

if (foo)
  doSomething();
else
  doSomethingElse();

if (foo) foo(
  bar,
  baz);

Examples of correct code for the "multi-line" option:

/*eslint curly: ["error", "multi-line"]*/

if (foo) foo++; else doSomething();

if (foo) foo++;
else if (bar) baz()
else doSomething();

do something();
while (foo);

while (foo
  && bar) baz();

if (foo) {
    foo++;
}

if (foo) { foo++; }

while (true) {
    doSomething();
    doSomethingElse();
}

multi-or-nest

You can use another configuration that forces brace-less if, else if, else, for, while, or do if their body contains only one single-line statement. And forces braces in all other cases.

Examples of incorrect code for the "multi-or-nest" option:

/*eslint curly: ["error", "multi-or-nest"]*/

if (!foo)
    foo = {
        bar: baz,
        qux: foo
    };

while (true)
  if(foo)
      doSomething();
  else
      doSomethingElse();

if (foo) {
    foo++;
}

while (true) {
    doSomething();
}

for (var i = 0; foo; i++) {
    doSomething();
}

if (foo)
    // some comment
    bar();

Examples of correct code for the "multi-or-nest" option:

/*eslint curly: ["error", "multi-or-nest"]*/

if (!foo) {
    foo = {
        bar: baz,
        qux: foo
    };
}

while (true) {
  if(foo)
      doSomething();
  else
      doSomethingElse();
}

if (foo)
    foo++;

while (true)
    doSomething();

for (var i = 0; foo; i++)
    doSomething();

if (foo) {
    // some comment
    bar();
}

consistent

When using any of the multi* options, you can add an option to enforce all bodies of a if, else if and else chain to be with or without braces.

Examples of incorrect code for the "multi", "consistent" options:

/*eslint curly: ["error", "multi", "consistent"]*/

if (foo) {
    bar();
    baz();
} else
    buz();

if (foo)
    bar();
else if (faa)
    bor();
else {
    other();
    things();
}

if (true)
    foo();
else {
    baz();
}

if (foo) {
    foo++;
}

Examples of correct code for the "multi", "consistent" options:

/*eslint curly: ["error", "multi", "consistent"]*/

if (foo) {
    bar();
    baz();
} else {
    buz();
}

if (foo) {
    bar();
} else if (faa) {
    bor();
} else {
    other();
    things();
}

if (true)
    foo();
else
    baz();

if (foo)
    foo++;

When Not To Use It

If you have no strict conventions about when to use block statements and when not to, you can safely disable this rule. Source: http://eslint.org/docs/rules/

Extra semicolon.
Open

  const inversed = fft.createComplexArray();
Severity: Minor
Found in packages/spectral-models/src/dft.js by eslint

require or disallow semicolons instead of ASI (semi)

JavaScript is unique amongst the C-like languages in that it doesn't require semicolons at the end of each statement. In many cases, the JavaScript engine can determine that a semicolon should be in a certain spot and will automatically add it. This feature is known as automatic semicolon insertion (ASI) and is considered one of the more controversial features of JavaScript. For example, the following lines are both valid:

var name = "ESLint"
var website = "eslint.org";

On the first line, the JavaScript engine will automatically insert a semicolon, so this is not considered a syntax error. The JavaScript engine still knows how to interpret the line and knows that the line end indicates the end of the statement.

In the debate over ASI, there are generally two schools of thought. The first is that we should treat ASI as if it didn't exist and always include semicolons manually. The rationale is that it's easier to always include semicolons than to try to remember when they are or are not required, and thus decreases the possibility of introducing an error.

However, the ASI mechanism can sometimes be tricky to people who are using semicolons. For example, consider this code:

return
{
    name: "ESLint"
};

This may look like a return statement that returns an object literal, however, the JavaScript engine will interpret this code as:

return;
{
    name: "ESLint";
}

Effectively, a semicolon is inserted after the return statement, causing the code below it (a labeled literal inside a block) to be unreachable. This rule and the [no-unreachable](no-unreachable.md) rule will protect your code from such cases.

On the other side of the argument are those who says that since semicolons are inserted automatically, they are optional and do not need to be inserted manually. However, the ASI mechanism can also be tricky to people who don't use semicolons. For example, consider this code:

var globalCounter = { }

(function () {
    var n = 0
    globalCounter.increment = function () {
        return ++n
    }
})()

In this example, a semicolon will not be inserted after the first line, causing a run-time error (because an empty object is called as if it's a function). The [no-unexpected-multiline](no-unexpected-multiline.md) rule can protect your code from such cases.

Although ASI allows for more freedom over your coding style, it can also make your code behave in an unexpected way, whether you use semicolons or not. Therefore, it is best to know when ASI takes place and when it does not, and have ESLint protect your code from these potentially unexpected cases. In short, as once described by Isaac Schlueter, a \n character always ends a statement (just like a semicolon) unless one of the following is true:

  1. The statement has an unclosed paren, array literal, or object literal or ends in some other way that is not a valid way to end a statement. (For instance, ending with . or ,.)
  2. The line is -- or ++ (in which case it will decrement/increment the next token.)
  3. It is a for(), while(), do, if(), or else, and there is no {
  4. The next line starts with [, (, +, *, /, -, ,, ., or some other binary operator that can only be found between two tokens in a single expression.

Rule Details

This rule enforces consistent use of semicolons.

Options

This rule has two options, a string option and an object option.

String option:

  • "always" (default) requires semicolons at the end of statements
  • "never" disallows semicolons as the end of statements (except to disambiguate statements beginning with [, (, /, +, or -)

Object option:

  • "omitLastInOneLineBlock": true ignores the last semicolon in a block in which its braces (and therefore the content of the block) are in the same line

always

Examples of incorrect code for this rule with the default "always" option:

/*eslint semi: ["error", "always"]*/

var name = "ESLint"

object.method = function() {
    // ...
}

Examples of correct code for this rule with the default "always" option:

/*eslint semi: "error"*/

var name = "ESLint";

object.method = function() {
    // ...
};

never

Examples of incorrect code for this rule with the "never" option:

/*eslint semi: ["error", "never"]*/

var name = "ESLint";

object.method = function() {
    // ...
};

Examples of correct code for this rule with the "never" option:

/*eslint semi: ["error", "never"]*/

var name = "ESLint"

object.method = function() {
    // ...
}

var name = "ESLint"

;(function() {
    // ...
})()

omitLastInOneLineBlock

Examples of additional correct code for this rule with the "always", { "omitLastInOneLineBlock": true } options:

/*eslint semi: ["error", "always", { "omitLastInOneLineBlock": true}] */

if (foo) { bar() }

if (foo) { bar(); baz() }

When Not To Use It

If you do not want to enforce semicolon usage (or omission) in any particular way, then you can turn this rule off.

Further Reading

Related Rules

  • [no-extra-semi](no-extra-semi.md)
  • [no-unexpected-multiline](no-unexpected-multiline.md)
  • [semi-spacing](semi-spacing.md) Source: http://eslint.org/docs/rules/

Extra semicolon.
Open

  const phases = new Array(spectrumSize);
Severity: Minor
Found in packages/spectral-models/src/dft.js by eslint

require or disallow semicolons instead of ASI (semi)

JavaScript is unique amongst the C-like languages in that it doesn't require semicolons at the end of each statement. In many cases, the JavaScript engine can determine that a semicolon should be in a certain spot and will automatically add it. This feature is known as automatic semicolon insertion (ASI) and is considered one of the more controversial features of JavaScript. For example, the following lines are both valid:

var name = "ESLint"
var website = "eslint.org";

On the first line, the JavaScript engine will automatically insert a semicolon, so this is not considered a syntax error. The JavaScript engine still knows how to interpret the line and knows that the line end indicates the end of the statement.

In the debate over ASI, there are generally two schools of thought. The first is that we should treat ASI as if it didn't exist and always include semicolons manually. The rationale is that it's easier to always include semicolons than to try to remember when they are or are not required, and thus decreases the possibility of introducing an error.

However, the ASI mechanism can sometimes be tricky to people who are using semicolons. For example, consider this code:

return
{
    name: "ESLint"
};

This may look like a return statement that returns an object literal, however, the JavaScript engine will interpret this code as:

return;
{
    name: "ESLint";
}

Effectively, a semicolon is inserted after the return statement, causing the code below it (a labeled literal inside a block) to be unreachable. This rule and the [no-unreachable](no-unreachable.md) rule will protect your code from such cases.

On the other side of the argument are those who says that since semicolons are inserted automatically, they are optional and do not need to be inserted manually. However, the ASI mechanism can also be tricky to people who don't use semicolons. For example, consider this code:

var globalCounter = { }

(function () {
    var n = 0
    globalCounter.increment = function () {
        return ++n
    }
})()

In this example, a semicolon will not be inserted after the first line, causing a run-time error (because an empty object is called as if it's a function). The [no-unexpected-multiline](no-unexpected-multiline.md) rule can protect your code from such cases.

Although ASI allows for more freedom over your coding style, it can also make your code behave in an unexpected way, whether you use semicolons or not. Therefore, it is best to know when ASI takes place and when it does not, and have ESLint protect your code from these potentially unexpected cases. In short, as once described by Isaac Schlueter, a \n character always ends a statement (just like a semicolon) unless one of the following is true:

  1. The statement has an unclosed paren, array literal, or object literal or ends in some other way that is not a valid way to end a statement. (For instance, ending with . or ,.)
  2. The line is -- or ++ (in which case it will decrement/increment the next token.)
  3. It is a for(), while(), do, if(), or else, and there is no {
  4. The next line starts with [, (, +, *, /, -, ,, ., or some other binary operator that can only be found between two tokens in a single expression.

Rule Details

This rule enforces consistent use of semicolons.

Options

This rule has two options, a string option and an object option.

String option:

  • "always" (default) requires semicolons at the end of statements
  • "never" disallows semicolons as the end of statements (except to disambiguate statements beginning with [, (, /, +, or -)

Object option:

  • "omitLastInOneLineBlock": true ignores the last semicolon in a block in which its braces (and therefore the content of the block) are in the same line

always

Examples of incorrect code for this rule with the default "always" option:

/*eslint semi: ["error", "always"]*/

var name = "ESLint"

object.method = function() {
    // ...
}

Examples of correct code for this rule with the default "always" option:

/*eslint semi: "error"*/

var name = "ESLint";

object.method = function() {
    // ...
};

never

Examples of incorrect code for this rule with the "never" option:

/*eslint semi: ["error", "never"]*/

var name = "ESLint";

object.method = function() {
    // ...
};

Examples of correct code for this rule with the "never" option:

/*eslint semi: ["error", "never"]*/

var name = "ESLint"

object.method = function() {
    // ...
}

var name = "ESLint"

;(function() {
    // ...
})()

omitLastInOneLineBlock

Examples of additional correct code for this rule with the "always", { "omitLastInOneLineBlock": true } options:

/*eslint semi: ["error", "always", { "omitLastInOneLineBlock": true}] */

if (foo) { bar() }

if (foo) { bar(); baz() }

When Not To Use It

If you do not want to enforce semicolon usage (or omission) in any particular way, then you can turn this rule off.

Further Reading

Related Rules

  • [no-extra-semi](no-extra-semi.md)
  • [no-unexpected-multiline](no-unexpected-multiline.md)
  • [semi-spacing](semi-spacing.md) Source: http://eslint.org/docs/rules/

Extra semicolon.
Open

      fft.inverseTransform(inversed, output);
Severity: Minor
Found in packages/spectral-models/src/dft.js by eslint

require or disallow semicolons instead of ASI (semi)

JavaScript is unique amongst the C-like languages in that it doesn't require semicolons at the end of each statement. In many cases, the JavaScript engine can determine that a semicolon should be in a certain spot and will automatically add it. This feature is known as automatic semicolon insertion (ASI) and is considered one of the more controversial features of JavaScript. For example, the following lines are both valid:

var name = "ESLint"
var website = "eslint.org";

On the first line, the JavaScript engine will automatically insert a semicolon, so this is not considered a syntax error. The JavaScript engine still knows how to interpret the line and knows that the line end indicates the end of the statement.

In the debate over ASI, there are generally two schools of thought. The first is that we should treat ASI as if it didn't exist and always include semicolons manually. The rationale is that it's easier to always include semicolons than to try to remember when they are or are not required, and thus decreases the possibility of introducing an error.

However, the ASI mechanism can sometimes be tricky to people who are using semicolons. For example, consider this code:

return
{
    name: "ESLint"
};

This may look like a return statement that returns an object literal, however, the JavaScript engine will interpret this code as:

return;
{
    name: "ESLint";
}

Effectively, a semicolon is inserted after the return statement, causing the code below it (a labeled literal inside a block) to be unreachable. This rule and the [no-unreachable](no-unreachable.md) rule will protect your code from such cases.

On the other side of the argument are those who says that since semicolons are inserted automatically, they are optional and do not need to be inserted manually. However, the ASI mechanism can also be tricky to people who don't use semicolons. For example, consider this code:

var globalCounter = { }

(function () {
    var n = 0
    globalCounter.increment = function () {
        return ++n
    }
})()

In this example, a semicolon will not be inserted after the first line, causing a run-time error (because an empty object is called as if it's a function). The [no-unexpected-multiline](no-unexpected-multiline.md) rule can protect your code from such cases.

Although ASI allows for more freedom over your coding style, it can also make your code behave in an unexpected way, whether you use semicolons or not. Therefore, it is best to know when ASI takes place and when it does not, and have ESLint protect your code from these potentially unexpected cases. In short, as once described by Isaac Schlueter, a \n character always ends a statement (just like a semicolon) unless one of the following is true:

  1. The statement has an unclosed paren, array literal, or object literal or ends in some other way that is not a valid way to end a statement. (For instance, ending with . or ,.)
  2. The line is -- or ++ (in which case it will decrement/increment the next token.)
  3. It is a for(), while(), do, if(), or else, and there is no {
  4. The next line starts with [, (, +, *, /, -, ,, ., or some other binary operator that can only be found between two tokens in a single expression.

Rule Details

This rule enforces consistent use of semicolons.

Options

This rule has two options, a string option and an object option.

String option:

  • "always" (default) requires semicolons at the end of statements
  • "never" disallows semicolons as the end of statements (except to disambiguate statements beginning with [, (, /, +, or -)

Object option:

  • "omitLastInOneLineBlock": true ignores the last semicolon in a block in which its braces (and therefore the content of the block) are in the same line

always

Examples of incorrect code for this rule with the default "always" option:

/*eslint semi: ["error", "always"]*/

var name = "ESLint"

object.method = function() {
    // ...
}

Examples of correct code for this rule with the default "always" option:

/*eslint semi: "error"*/

var name = "ESLint";

object.method = function() {
    // ...
};

never

Examples of incorrect code for this rule with the "never" option:

/*eslint semi: ["error", "never"]*/

var name = "ESLint";

object.method = function() {
    // ...
};

Examples of correct code for this rule with the "never" option:

/*eslint semi: ["error", "never"]*/

var name = "ESLint"

object.method = function() {
    // ...
}

var name = "ESLint"

;(function() {
    // ...
})()

omitLastInOneLineBlock

Examples of additional correct code for this rule with the "always", { "omitLastInOneLineBlock": true } options:

/*eslint semi: ["error", "always", { "omitLastInOneLineBlock": true}] */

if (foo) { bar() }

if (foo) { bar(); baz() }

When Not To Use It

If you do not want to enforce semicolon usage (or omission) in any particular way, then you can turn this rule off.

Further Reading

Related Rules

  • [no-extra-semi](no-extra-semi.md)
  • [no-unexpected-multiline](no-unexpected-multiline.md)
  • [semi-spacing](semi-spacing.md) Source: http://eslint.org/docs/rules/

Extra semicolon.
Open

module.exports = DFT;
Severity: Minor
Found in packages/spectral-models/src/dft.js by eslint

require or disallow semicolons instead of ASI (semi)

JavaScript is unique amongst the C-like languages in that it doesn't require semicolons at the end of each statement. In many cases, the JavaScript engine can determine that a semicolon should be in a certain spot and will automatically add it. This feature is known as automatic semicolon insertion (ASI) and is considered one of the more controversial features of JavaScript. For example, the following lines are both valid:

var name = "ESLint"
var website = "eslint.org";

On the first line, the JavaScript engine will automatically insert a semicolon, so this is not considered a syntax error. The JavaScript engine still knows how to interpret the line and knows that the line end indicates the end of the statement.

In the debate over ASI, there are generally two schools of thought. The first is that we should treat ASI as if it didn't exist and always include semicolons manually. The rationale is that it's easier to always include semicolons than to try to remember when they are or are not required, and thus decreases the possibility of introducing an error.

However, the ASI mechanism can sometimes be tricky to people who are using semicolons. For example, consider this code:

return
{
    name: "ESLint"
};

This may look like a return statement that returns an object literal, however, the JavaScript engine will interpret this code as:

return;
{
    name: "ESLint";
}

Effectively, a semicolon is inserted after the return statement, causing the code below it (a labeled literal inside a block) to be unreachable. This rule and the [no-unreachable](no-unreachable.md) rule will protect your code from such cases.

On the other side of the argument are those who says that since semicolons are inserted automatically, they are optional and do not need to be inserted manually. However, the ASI mechanism can also be tricky to people who don't use semicolons. For example, consider this code:

var globalCounter = { }

(function () {
    var n = 0
    globalCounter.increment = function () {
        return ++n
    }
})()

In this example, a semicolon will not be inserted after the first line, causing a run-time error (because an empty object is called as if it's a function). The [no-unexpected-multiline](no-unexpected-multiline.md) rule can protect your code from such cases.

Although ASI allows for more freedom over your coding style, it can also make your code behave in an unexpected way, whether you use semicolons or not. Therefore, it is best to know when ASI takes place and when it does not, and have ESLint protect your code from these potentially unexpected cases. In short, as once described by Isaac Schlueter, a \n character always ends a statement (just like a semicolon) unless one of the following is true:

  1. The statement has an unclosed paren, array literal, or object literal or ends in some other way that is not a valid way to end a statement. (For instance, ending with . or ,.)
  2. The line is -- or ++ (in which case it will decrement/increment the next token.)
  3. It is a for(), while(), do, if(), or else, and there is no {
  4. The next line starts with [, (, +, *, /, -, ,, ., or some other binary operator that can only be found between two tokens in a single expression.

Rule Details

This rule enforces consistent use of semicolons.

Options

This rule has two options, a string option and an object option.

String option:

  • "always" (default) requires semicolons at the end of statements
  • "never" disallows semicolons as the end of statements (except to disambiguate statements beginning with [, (, /, +, or -)

Object option:

  • "omitLastInOneLineBlock": true ignores the last semicolon in a block in which its braces (and therefore the content of the block) are in the same line

always

Examples of incorrect code for this rule with the default "always" option:

/*eslint semi: ["error", "always"]*/

var name = "ESLint"

object.method = function() {
    // ...
}

Examples of correct code for this rule with the default "always" option:

/*eslint semi: "error"*/

var name = "ESLint";

object.method = function() {
    // ...
};

never

Examples of incorrect code for this rule with the "never" option:

/*eslint semi: ["error", "never"]*/

var name = "ESLint";

object.method = function() {
    // ...
};

Examples of correct code for this rule with the "never" option:

/*eslint semi: ["error", "never"]*/

var name = "ESLint"

object.method = function() {
    // ...
}

var name = "ESLint"

;(function() {
    // ...
})()

omitLastInOneLineBlock

Examples of additional correct code for this rule with the "always", { "omitLastInOneLineBlock": true } options:

/*eslint semi: ["error", "always", { "omitLastInOneLineBlock": true}] */

if (foo) { bar() }

if (foo) { bar(); baz() }

When Not To Use It

If you do not want to enforce semicolon usage (or omission) in any particular way, then you can turn this rule off.

Further Reading

Related Rules

  • [no-extra-semi](no-extra-semi.md)
  • [no-unexpected-multiline](no-unexpected-multiline.md)
  • [semi-spacing](semi-spacing.md) Source: http://eslint.org/docs/rules/

More than 1 blank line not allowed.
Open


Severity: Minor
Found in packages/spectrum/example/unwrap.js by eslint

disallow multiple empty lines (no-multiple-empty-lines)

Some developers prefer to have multiple blank lines removed, while others feel that it helps improve readability. Whitespace is useful for separating logical sections of code, but excess whitespace takes up more of the screen.

Rule Details

This rule aims to reduce the scrolling required when reading through your code. It will warn when the maximum amount of empty lines has been exceeded.

Options

This rule has an object option:

  • "max" (default: 2) enforces a maximum number of consecutive empty lines.
  • "maxEOF" enforces a maximum number of consecutive empty lines at the end of files.
  • "maxBOF" enforces a maximum number of consecutive empty lines at the beginning of files.

max

Examples of incorrect code for this rule with the default { "max": 2 } option:

/*eslint no-multiple-empty-lines: "error"*/

var foo = 5;



var bar = 3;

Examples of correct code for this rule with the default { "max": 2 } option:

/*eslint no-multiple-empty-lines: "error"*/

var foo = 5;


var bar = 3;

maxEOF

Examples of incorrect code for this rule with the { max: 2, maxEOF: 1 } options:

/*eslint no-multiple-empty-lines: ["error", { "max": 2, "maxEOF": 1 }]*/

var foo = 5;


var bar = 3;

Examples of correct code for this rule with the { max: 2, maxEOF: 1 } options:

/*eslint no-multiple-empty-lines: ["error", { "max": 2, "maxEOF": 1 }]*/

var foo = 5;


var bar = 3;

maxBOF

Examples of incorrect code for this rule with the { max: 2, maxBOF: 1 } options:

/*eslint no-multiple-empty-lines: ["error", { "max": 2, "maxBOF": 1 }]*/


var foo = 5;


var bar = 3;

Examples of correct code for this rule with the { max: 2, maxBOF: 1 } options:

/*eslint no-multiple-empty-lines: ["error", { "max": 2, "maxBOF": 1}]*/

var foo = 5;


var bar = 3;

When Not To Use It

If you do not care about extra blank lines, turn this off. Source: http://eslint.org/docs/rules/

Expected indentation of 8 spaces but found 6.
Open

      change: function(e) {

enforce consistent indentation (indent)

There are several common guidelines which require specific indentation of nested blocks and statements, like:

function hello(indentSize, type) {
    if (indentSize === 4 && type !== 'tab') {
        console.log('Each next indentation will increase on 4 spaces');
    }
}

These are the most common scenarios recommended in different style guides:

  • Two spaces, not longer and no tabs: Google, npm, Node.js, Idiomatic, Felix
  • Tabs: jQuery
  • Four spaces: Crockford

Rule Details

This rule enforces a consistent indentation style. The default style is 4 spaces.

Options

This rule has a mixed option:

For example, for 2-space indentation:

{
    "indent": ["error", 2]
}

Or for tabbed indentation:

{
    "indent": ["error", "tab"]
}

Examples of incorrect code for this rule with the default options:

/*eslint indent: "error"*/

if (a) {
  b=c;
  function foo(d) {
    e=f;
  }
}

Examples of correct code for this rule with the default options:

/*eslint indent: "error"*/

if (a) {
    b=c;
    function foo(d) {
        e=f;
    }
}

This rule has an object option:

  • "SwitchCase" (default: 0) enforces indentation level for case clauses in switch statements
  • "VariableDeclarator" (default: 1) enforces indentation level for var declarators; can also take an object to define separate rules for var, let and const declarations.
  • "outerIIFEBody" (default: 1) enforces indentation level for file-level IIFEs.
  • "MemberExpression" (off by default) enforces indentation level for multi-line property chains (except in variable declarations and assignments)
  • "FunctionDeclaration" takes an object to define rules for function declarations.
    • parameters (off by default) enforces indentation level for parameters in a function declaration. This can either be a number indicating indentation level, or the string "first" indicating that all parameters of the declaration must be aligned with the first parameter.
    • body (default: 1) enforces indentation level for the body of a function declaration.
  • "FunctionExpression" takes an object to define rules for function expressions.
    • parameters (off by default) enforces indentation level for parameters in a function expression. This can either be a number indicating indentation level, or the string "first" indicating that all parameters of the expression must be aligned with the first parameter.
    • body (default: 1) enforces indentation level for the body of a function expression.
  • "CallExpression" takes an object to define rules for function call expressions.
    • arguments (off by default) enforces indentation level for arguments in a call expression. This can either be a number indicating indentation level, or the string "first" indicating that all arguments of the expression must be aligned with the first argument.
  • "ArrayExpression" (default: 1) enforces indentation level for elements in arrays. It can also be set to the string "first", indicating that all the elements in the array should be aligned with the first element.
  • "ObjectExpression" (default: 1) enforces indentation level for properties in objects. It can be set to the string "first", indicating that all properties in the object should be aligned with the first property.

Level of indentation denotes the multiple of the indent specified. Example:

  • Indent of 4 spaces with VariableDeclarator set to 2 will indent the multi-line variable declarations with 8 spaces.
  • Indent of 2 spaces with VariableDeclarator set to 2 will indent the multi-line variable declarations with 4 spaces.
  • Indent of 2 spaces with VariableDeclarator set to {"var": 2, "let": 2, "const": 3} will indent the multi-line variable declarations with 4 spaces for var and let, 6 spaces for const statements.
  • Indent of tab with VariableDeclarator set to 2 will indent the multi-line variable declarations with 2 tabs.
  • Indent of 2 spaces with SwitchCase set to 0 will not indent case clauses with respect to switch statements.
  • Indent of 2 spaces with SwitchCase set to 1 will indent case clauses with 2 spaces with respect to switch statements.
  • Indent of 2 spaces with SwitchCase set to 2 will indent case clauses with 4 spaces with respect to switch statements.
  • Indent of tab with SwitchCase set to 2 will indent case clauses with 2 tabs with respect to switch statements.
  • Indent of 2 spaces with MemberExpression set to 0 will indent the multi-line property chains with 0 spaces.
  • Indent of 2 spaces with MemberExpression set to 1 will indent the multi-line property chains with 2 spaces.
  • Indent of 2 spaces with MemberExpression set to 2 will indent the multi-line property chains with 4 spaces.
  • Indent of 4 spaces with MemberExpression set to 0 will indent the multi-line property chains with 0 spaces.
  • Indent of 4 spaces with MemberExpression set to 1 will indent the multi-line property chains with 4 spaces.
  • Indent of 4 spaces with MemberExpression set to 2 will indent the multi-line property chains with 8 spaces.

tab

Examples of incorrect code for this rule with the "tab" option:

/*eslint indent: ["error", "tab"]*/

if (a) {
     b=c;
function foo(d) {
           e=f;
 }
}

Examples of correct code for this rule with the "tab" option:

/*eslint indent: ["error", "tab"]*/

if (a) {
/*tab*/b=c;
/*tab*/function foo(d) {
/*tab*//*tab*/e=f;
/*tab*/}
}

SwitchCase

Examples of incorrect code for this rule with the 2, { "SwitchCase": 1 } options:

/*eslint indent: ["error", 2, { "SwitchCase": 1 }]*/

switch(a){
case "a":
    break;
case "b":
    break;
}

Examples of correct code for this rule with the 2, { "SwitchCase": 1 } option:

/*eslint indent: ["error", 2, { "SwitchCase": 1 }]*/

switch(a){
  case "a":
    break;
  case "b":
    break;
}

VariableDeclarator

Examples of incorrect code for this rule with the 2, { "VariableDeclarator": 1 } options:

/*eslint indent: ["error", 2, { "VariableDeclarator": 1 }]*/
/*eslint-env es6*/

var a,
    b,
    c;
let a,
    b,
    c;
const a = 1,
    b = 2,
    c = 3;

Examples of correct code for this rule with the 2, { "VariableDeclarator": 1 } options:

/*eslint indent: ["error", 2, { "VariableDeclarator": 1 }]*/
/*eslint-env es6*/

var a,
  b,
  c;
let a,
  b,
  c;
const a = 1,
  b = 2,
  c = 3;

Examples of correct code for this rule with the 2, { "VariableDeclarator": 2 } options:

/*eslint indent: ["error", 2, { "VariableDeclarator": 2 }]*/
/*eslint-env es6*/

var a,
    b,
    c;
let a,
    b,
    c;
const a = 1,
    b = 2,
    c = 3;

Examples of correct code for this rule with the 2, { "VariableDeclarator": { "var": 2, "let": 2, "const": 3 } } options:

/*eslint indent: ["error", 2, { "VariableDeclarator": { "var": 2, "let": 2, "const": 3 } }]*/
/*eslint-env es6*/

var a,
    b,
    c;
let a,
    b,
    c;
const a = 1,
      b = 2,
      c = 3;

outerIIFEBody

Examples of incorrect code for this rule with the options 2, { "outerIIFEBody": 0 }:

/*eslint indent: ["error", 2, { "outerIIFEBody": 0 }]*/

(function() {

  function foo(x) {
    return x + 1;
  }

})();


if(y) {
console.log('foo');
}

Examples of correct code for this rule with the options 2, {"outerIIFEBody": 0}:

/*eslint indent: ["error", 2, { "outerIIFEBody": 0 }]*/

(function() {

function foo(x) {
  return x + 1;
}

})();


if(y) {
   console.log('foo');
}

MemberExpression

Examples of incorrect code for this rule with the 2, { "MemberExpression": 1 } options:

/*eslint indent: ["error", 2, { "MemberExpression": 1 }]*/

foo
.bar
.baz()

Examples of correct code for this rule with the 2, { "MemberExpression": 1 } option:

/*eslint indent: ["error", 2, { "MemberExpression": 1 }]*/

foo
  .bar
  .baz();

// Any indentation is permitted in variable declarations and assignments.
var bip = aardvark.badger
                  .coyote;

FunctionDeclaration

Examples of incorrect code for this rule with the 2, { "FunctionDeclaration": {"body": 1, "parameters": 2} } option:

/*eslint indent: ["error", 2, { "FunctionDeclaration": {"body": 1, "parameters": 2} }]*/

function foo(bar,
  baz,
  qux) {
    qux();
}

Examples of correct code for this rule with the 2, { "FunctionDeclaration": {"body": 1, "parameters": 2} } option:

/*eslint indent: ["error", 2, { "FunctionDeclaration": {"body": 1, "parameters": 2} }]*/

function foo(bar,
    baz,
    qux) {
  qux();
}

Examples of incorrect code for this rule with the 2, { "FunctionDeclaration": {"parameters": "first"} } option:

/*eslint indent: ["error", 2, {"FunctionDeclaration": {"parameters": "first"}}]*/

function foo(bar, baz,
  qux, boop) {
  qux();
}

Examples of correct code for this rule with the 2, { "FunctionDeclaration": {"parameters": "first"} } option:

/*eslint indent: ["error", 2, {"FunctionDeclaration": {"parameters": "first"}}]*/

function foo(bar, baz,
             qux, boop) {
  qux();
}

FunctionExpression

Examples of incorrect code for this rule with the 2, { "FunctionExpression": {"body": 1, "parameters": 2} } option:

/*eslint indent: ["error", 2, { "FunctionExpression": {"body": 1, "parameters": 2} }]*/

var foo = function(bar,
  baz,
  qux) {
    qux();
}

Examples of correct code for this rule with the 2, { "FunctionExpression": {"body": 1, "parameters": 2} } option:

/*eslint indent: ["error", 2, { "FunctionExpression": {"body": 1, "parameters": 2} }]*/

var foo = function(bar,
    baz,
    qux) {
  qux();
}

Examples of incorrect code for this rule with the 2, { "FunctionExpression": {"parameters": "first"} } option:

/*eslint indent: ["error", 2, {"FunctionExpression": {"parameters": "first"}}]*/

var foo = function(bar, baz,
  qux, boop) {
  qux();
}

Examples of correct code for this rule with the 2, { "FunctionExpression": {"parameters": "first"} } option:

/*eslint indent: ["error", 2, {"FunctionExpression": {"parameters": "first"}}]*/

var foo = function(bar, baz,
                   qux, boop) {
  qux();
}

CallExpression

Examples of incorrect code for this rule with the 2, { "CallExpression": {"arguments": 1} } option:

/*eslint indent: ["error", 2, { "CallExpression": {"arguments": 1} }]*/

foo(bar,
    baz,
      qux
);

Examples of correct code for this rule with the 2, { "CallExpression": {"arguments": 1} } option:

/*eslint indent: ["error", 2, { "CallExpression": {"arguments": 1} }]*/

foo(bar,
  baz,
  qux
);

Examples of incorrect code for this rule with the 2, { "CallExpression": {"arguments": "first"} } option:

/*eslint indent: ["error", 2, {"CallExpression": {"arguments": "first"}}]*/

foo(bar, baz,
  baz, boop, beep);

Examples of correct code for this rule with the 2, { "CallExpression": {"arguments": "first"} } option:

/*eslint indent: ["error", 2, {"CallExpression": {"arguments": "first"}}]*/

foo(bar, baz,
    baz, boop, beep);

ArrayExpression

Examples of incorrect code for this rule with the 2, { "ArrayExpression": 1 } option:

/*eslint indent: ["error", 2, { "ArrayExpression": 1 }]*/

var foo = [
    bar,
baz,
      qux
];

Examples of correct code for this rule with the 2, { "ArrayExpression": 1 } option:

/*eslint indent: ["error", 2, { "ArrayExpression": 1 }]*/

var foo = [
  bar,
  baz,
  qux
];

Examples of incorrect code for this rule with the 2, { "ArrayExpression": "first" } option:

/*eslint indent: ["error", 2, {"ArrayExpression": "first"}]*/

var foo = [bar,
  baz,
  qux
];

Examples of correct code for this rule with the 2, { "ArrayExpression": "first" } option:

/*eslint indent: ["error", 2, {"ArrayExpression": "first"}]*/

var foo = [bar,
           baz,
           qux
];

ObjectExpression

Examples of incorrect code for this rule with the 2, { "ObjectExpression": 1 } option:

/*eslint indent: ["error", 2, { "ObjectExpression": 1 }]*/

var foo = {
    bar: 1,
baz: 2,
      qux: 3
};

Examples of correct code for this rule with the 2, { "ObjectExpression": 1 } option:

/*eslint indent: ["error", 2, { "ObjectExpression": 1 }]*/

var foo = {
  bar: 1,
  baz: 2,
  qux: 3
};

Examples of incorrect code for this rule with the 2, { "ObjectExpression": "first" } option:

/*eslint indent: ["error", 2, {"ObjectExpression": "first"}]*/

var foo = { bar: 1,
  baz: 2 };

Examples of correct code for this rule with the 2, { "ObjectExpression": "first" } option:

/*eslint indent: ["error", 2, {"ObjectExpression": "first"}]*/

var foo = { bar: 1,
            baz: 2 };

Compatibility

Split initialized 'var' declarations into multiple statements.
Open

  var c = 0, s = 0, t1 = 0, t2 = 0;
Severity: Minor
Found in packages/fft-asm/versions/fftc.js by eslint

enforce variables to be declared either together or separately in functions (one-var)

Variables can be declared at any point in JavaScript code using var, let, or const. There are many styles and preferences related to the declaration of variables, and one of those is deciding on how many variable declarations should be allowed in a single function.

There are two schools of thought in this regard:

  1. There should be just one variable declaration for all variables in the function. That declaration typically appears at the top of the function.
  2. You should use one variable declaration for each variable you want to define.

For instance:

// one variable declaration per function
function foo() {
    var bar, baz;
}

// multiple variable declarations per function
function foo() {
    var bar;
    var baz;
}

The single-declaration school of thought is based in pre-ECMAScript 6 behaviors, where there was no such thing as block scope, only function scope. Since all var statements are hoisted to the top of the function anyway, some believe that declaring all variables in a single declaration at the top of the function removes confusion around scoping rules.

Rule Details

This rule enforces variables to be declared either together or separately per function ( for var) or block (for let and const) scope.

Options

This rule has one option, which can be a string option or an object option.

String option:

  • "always" (default) requires one variable declaration per scope
  • "never" requires multiple variable declarations per scope

Object option:

  • "var": "always" requires one var declaration per function
  • "var": "never" requires multiple var declarations per function
  • "let": "always" requires one let declaration per block
  • "let": "never" requires multiple let declarations per block
  • "const": "always" requires one const declaration per block
  • "const": "never" requires multiple const declarations per block

Alternate object option:

  • "initialized": "always" requires one variable declaration for initialized variables per scope
  • "initialized": "never" requires multiple variable declarations for initialized variables per scope
  • "uninitialized": "always" requires one variable declaration for uninitialized variables per scope
  • "uninitialized": "never" requires multiple variable declarations for uninitialized variables per scope

always

Examples of incorrect code for this rule with the default "always" option:

/*eslint one-var: ["error", "always"]*/
/*eslint-env es6*/

function foo() {
    var bar;
    var baz;
    let qux;
    let norf;
}

function foo(){
    const bar = false;
    const baz = true;
    let qux;
    let norf;
}

function foo() {
    var bar;

    if (baz) {
        var qux = true;
    }
}

Examples of correct code for this rule with the default "always" option:

/*eslint one-var: ["error", "always"]*/
/*eslint-env es6*/

function foo() {
    var bar,
        baz;
    let qux,
        norf;
}

function foo(){
    const bar = true,
        baz = false;
    let qux,
        norf;
}

function foo() {
    var bar,
        qux;

    if (baz) {
        qux = true;
    }
}

function foo(){
    let bar;

    if (baz) {
        let qux;
    }
}

never

Examples of incorrect code for this rule with the "never" option:

/*eslint one-var: ["error", "never"]*/
/*eslint-env es6*/

function foo() {
    var bar,
        baz;
    const bar = true,
        baz = false;
}

function foo() {
    var bar,
        qux;

    if (baz) {
        qux = true;
    }
}

function foo(){
    let bar = true,
        baz = false;
}

Examples of correct code for this rule with the "never" option:

/*eslint one-var: ["error", "never"]*/
/*eslint-env es6*/

function foo() {
    var bar;
    var baz;
}

function foo() {
    var bar;

    if (baz) {
        var qux = true;
    }
}

function foo() {
    let bar;

    if (baz) {
        let qux = true;
    }
}

var, let, and const

Examples of incorrect code for this rule with the { var: "always", let: "never", const: "never" } option:

/*eslint one-var: ["error", { var: "always", let: "never", const: "never" }]*/
/*eslint-env es6*/

function foo() {
    var bar;
    var baz;
    let qux,
        norf;
}

function foo() {
    const bar = 1,
          baz = 2;
    let qux,
        norf;
}

Examples of correct code for this rule with the { var: "always", let: "never", const: "never" } option:

/*eslint one-var: ["error", { var: "always", let: "never", const: "never" }]*/
/*eslint-env es6*/

function foo() {
    var bar,
        baz;
    let qux;
    let norf;
}

function foo() {
    const bar = 1;
    const baz = 2;
    let qux;
    let norf;
}

Examples of incorrect code for this rule with the { var: "never" } option:

/*eslint one-var: ["error", { var: "never" }]*/
/*eslint-env es6*/

function foo() {
    var bar,
        baz;
}

Examples of correct code for this rule with the { var: "never" } option:

/*eslint one-var: ["error", { var: "never" }]*/
/*eslint-env es6*/

function foo() {
    var bar,
        baz;
    const bar = 1; // `const` and `let` declarations are ignored if they are not specified
    const baz = 2;
    let qux;
    let norf;
}

initialized and uninitialized

Examples of incorrect code for this rule with the { "initialized": "always", "uninitialized": "never" } option:

/*eslint one-var: ["error", { "initialized": "always", "uninitialized": "never" }]*/
/*eslint-env es6*/

function foo() {
    var a, b, c;
    var foo = true;
    var bar = false;
}

Examples of correct code for this rule with the { "initialized": "always", "uninitialized": "never" } option:

/*eslint one-var: ["error", { "initialized": "always", "uninitialized": "never" }]*/

function foo() {
    var a;
    var b;
    var c;
    var foo = true,
        bar = false;
}

for (let z of foo) {
    doSomething(z);
}

let z;
for (z of foo) {
    doSomething(z);
}

Examples of incorrect code for this rule with the { "initialized": "never" } option:

/*eslint one-var: ["error", { "initialized": "never" }]*/
/*eslint-env es6*/

function foo() {
    var foo = true,
        bar = false;
}

Examples of correct code for this rule with the { "initialized": "never" } option:

/*eslint one-var: ["error", { initialized: "never" }]*/

function foo() {
    var foo = true;
    var bar = false;
    var a, b, c; // Uninitialized variables are ignored
}

Compatibility

Extra semicolon.
Open

const { sin, cos } = Math;
Severity: Minor
Found in packages/spectral-models/src/dft.js by eslint

require or disallow semicolons instead of ASI (semi)

JavaScript is unique amongst the C-like languages in that it doesn't require semicolons at the end of each statement. In many cases, the JavaScript engine can determine that a semicolon should be in a certain spot and will automatically add it. This feature is known as automatic semicolon insertion (ASI) and is considered one of the more controversial features of JavaScript. For example, the following lines are both valid:

var name = "ESLint"
var website = "eslint.org";

On the first line, the JavaScript engine will automatically insert a semicolon, so this is not considered a syntax error. The JavaScript engine still knows how to interpret the line and knows that the line end indicates the end of the statement.

In the debate over ASI, there are generally two schools of thought. The first is that we should treat ASI as if it didn't exist and always include semicolons manually. The rationale is that it's easier to always include semicolons than to try to remember when they are or are not required, and thus decreases the possibility of introducing an error.

However, the ASI mechanism can sometimes be tricky to people who are using semicolons. For example, consider this code:

return
{
    name: "ESLint"
};

This may look like a return statement that returns an object literal, however, the JavaScript engine will interpret this code as:

return;
{
    name: "ESLint";
}

Effectively, a semicolon is inserted after the return statement, causing the code below it (a labeled literal inside a block) to be unreachable. This rule and the [no-unreachable](no-unreachable.md) rule will protect your code from such cases.

On the other side of the argument are those who says that since semicolons are inserted automatically, they are optional and do not need to be inserted manually. However, the ASI mechanism can also be tricky to people who don't use semicolons. For example, consider this code:

var globalCounter = { }

(function () {
    var n = 0
    globalCounter.increment = function () {
        return ++n
    }
})()

In this example, a semicolon will not be inserted after the first line, causing a run-time error (because an empty object is called as if it's a function). The [no-unexpected-multiline](no-unexpected-multiline.md) rule can protect your code from such cases.

Although ASI allows for more freedom over your coding style, it can also make your code behave in an unexpected way, whether you use semicolons or not. Therefore, it is best to know when ASI takes place and when it does not, and have ESLint protect your code from these potentially unexpected cases. In short, as once described by Isaac Schlueter, a \n character always ends a statement (just like a semicolon) unless one of the following is true:

  1. The statement has an unclosed paren, array literal, or object literal or ends in some other way that is not a valid way to end a statement. (For instance, ending with . or ,.)
  2. The line is -- or ++ (in which case it will decrement/increment the next token.)
  3. It is a for(), while(), do, if(), or else, and there is no {
  4. The next line starts with [, (, +, *, /, -, ,, ., or some other binary operator that can only be found between two tokens in a single expression.

Rule Details

This rule enforces consistent use of semicolons.

Options

This rule has two options, a string option and an object option.

String option:

  • "always" (default) requires semicolons at the end of statements
  • "never" disallows semicolons as the end of statements (except to disambiguate statements beginning with [, (, /, +, or -)

Object option:

  • "omitLastInOneLineBlock": true ignores the last semicolon in a block in which its braces (and therefore the content of the block) are in the same line

always

Examples of incorrect code for this rule with the default "always" option:

/*eslint semi: ["error", "always"]*/

var name = "ESLint"

object.method = function() {
    // ...
}

Examples of correct code for this rule with the default "always" option:

/*eslint semi: "error"*/

var name = "ESLint";

object.method = function() {
    // ...
};

never

Examples of incorrect code for this rule with the "never" option:

/*eslint semi: ["error", "never"]*/

var name = "ESLint";

object.method = function() {
    // ...
};

Examples of correct code for this rule with the "never" option:

/*eslint semi: ["error", "never"]*/

var name = "ESLint"

object.method = function() {
    // ...
}

var name = "ESLint"

;(function() {
    // ...
})()

omitLastInOneLineBlock

Examples of additional correct code for this rule with the "always", { "omitLastInOneLineBlock": true } options:

/*eslint semi: ["error", "always", { "omitLastInOneLineBlock": true}] */

if (foo) { bar() }

if (foo) { bar(); baz() }

When Not To Use It

If you do not want to enforce semicolon usage (or omission) in any particular way, then you can turn this rule off.

Further Reading

Related Rules

  • [no-extra-semi](no-extra-semi.md)
  • [no-unexpected-multiline](no-unexpected-multiline.md)
  • [semi-spacing](semi-spacing.md) Source: http://eslint.org/docs/rules/

Object properties must go on a new line if they aren't all on the same line.
Open

      type: 'range', min: 0.2, max: 2.5, step: 0.1, value: 1.2,

enforce placing object properties on separate lines (object-property-newline)

While formatting preferences are very personal, a number of style guides require that object properties be placed on separate lines for better readability.

Another argument in favor of this style is that it improves the readability of diffs when a property is changed:

// More readable
 var obj = {
     foo: "foo",
-    bar: "bar",
+    bar: "bazz",
     baz: "baz"
 };
// Less readable
-var obj = { foo: "foo", bar: "bar", baz: "baz" };
+var obj = { foo: "foo", bar: "bazz", baz: "baz" };

Rule Details

This rule aims to maintain consistency of newlines between object properties.

Examples of incorrect code for this rule:

/*eslint object-property-newline: "error"*/

var obj = { foo: "foo", bar: "bar", baz: "baz" };

var obj2 = {
    foo: "foo", bar: "bar", baz: "baz"
};

var obj3 = {
    foo: "foo", bar: "bar",
    baz: "baz"
};

Examples of correct code for this rule:

/*eslint object-property-newline: "error"*/

var obj = {
    foo: "foo",
    bar: "bar",
    baz: "baz"
};

Options

This rule has an object option:

  • "allowMultiplePropertiesPerLine": true allows all keys and values to be on the same line

allowMultiplePropertiesPerLine

Examples of additional correct code for this rule with the { "allowMultiplePropertiesPerLine": true } option:

/*eslint object-property-newline: ["error", { "allowMultiplePropertiesPerLine": true }]*/

var obj = { foo: "foo", bar: "bar", baz: "baz" };

var obj2 = {
    foo: "foo", bar: "bar", baz: "baz"
};

When Not To Use It

You can turn this rule off if you are not concerned with the consistency of newlines between object properties.

Compatibility

Related Rules

  • [brace-style](brace-style.md)
  • [comma-dangle](comma-dangle.md)
  • [key-spacing](key-spacing.md)
  • [object-curly-spacing](object-curly-spacing.md) Source: http://eslint.org/docs/rules/

'SIZE' is not defined.
Open

var signal = arr.fill(SIZE, () => Math.random() * 2 - 0.5)

Disallow Undeclared Variables (no-undef)

This rule can help you locate potential ReferenceErrors resulting from misspellings of variable and parameter names, or accidental implicit globals (for example, from forgetting the var keyword in a for loop initializer).

Rule Details

Any reference to an undeclared variable causes a warning, unless the variable is explicitly mentioned in a /*global ...*/ comment.

Examples of incorrect code for this rule:

/*eslint no-undef: "error"*/

var a = someFunction();
b = 10;

Examples of correct code for this rule with global declaration:

/*global someFunction b:true*/
/*eslint no-undef: "error"*/

var a = someFunction();
b = 10;

The b:true syntax in /*global */ indicates that assignment to b is correct.

Examples of incorrect code for this rule with global declaration:

/*global b*/
/*eslint no-undef: "error"*/

b = 10;

By default, variables declared in /*global */ are read-only, therefore assignment is incorrect.

Options

  • typeof set to true will warn for variables used inside typeof check (Default false).

typeof

Examples of correct code for the default { "typeof": false } option:

/*eslint no-undef: "error"*/

if (typeof UndefinedIdentifier === "undefined") {
    // do something ...
}

You can use this option if you want to prevent typeof check on a variable which has not been declared.

Examples of incorrect code for the { "typeof": true } option:

/*eslint no-undef: ["error", { "typeof": true }] */

if(typeof a === "string"){}

Examples of correct code for the { "typeof": true } option with global declaration:

/*global a*/
/*eslint no-undef: ["error", { "typeof": true }] */

if(typeof a === "string"){}

Environments

For convenience, ESLint provides shortcuts that pre-define global variables exposed by popular libraries and runtime environments. This rule supports these environments, as listed in Specifying Environments. A few examples are given below.

browser

Examples of correct code for this rule with browser environment:

/*eslint no-undef: "error"*/
/*eslint-env browser*/

setTimeout(function() {
    alert("Hello");
});

node

Examples of correct code for this rule with node environment:

/*eslint no-undef: "error"*/
/*eslint-env node*/

var fs = require("fs");
module.exports = function() {
    console.log(fs);
};

When Not To Use It

If explicit declaration of global variables is not to your taste.

Compatibility

This rule provides compatibility with treatment of global variables in JSHint and JSLint. Source: http://eslint.org/docs/rules/

'almost' is assigned a value but never used.
Open

var almost = require('almost-equal')
Severity: Minor
Found in packages/fft2/test/test.js by eslint

Disallow Unused Variables (no-unused-vars)

Variables that are declared and not used anywhere in the code are most likely an error due to incomplete refactoring. Such variables take up space in the code and can lead to confusion by readers.

Rule Details

This rule is aimed at eliminating unused variables, functions, and parameters of functions.

A variable is considered to be used if any of the following are true:

  • It represents a function that is called (doSomething())
  • It is read (var y = x)
  • It is passed into a function as an argument (doSomething(x))
  • It is read inside of a function that is passed to another function (doSomething(function() { foo(); }))

A variable is not considered to be used if it is only ever assigned to (var x = 5) or declared.

Examples of incorrect code for this rule:

/*eslint no-unused-vars: "error"*/
/*global some_unused_var*/

// It checks variables you have defined as global
some_unused_var = 42;

var x;

// Write-only variables are not considered as used.
var y = 10;
y = 5;

// A read for a modification of itself is not considered as used.
var z = 0;
z = z + 1;

// By default, unused arguments cause warnings.
(function(foo) {
    return 5;
})();

// Unused recursive functions also cause warnings.
function fact(n) {
    if (n < 2) return 1;
    return n * fact(n - 1);
}

// When a function definition destructures an array, unused entries from the array also cause warnings.
function getY([x, y]) {
    return y;
}

Examples of correct code for this rule:

/*eslint no-unused-vars: "error"*/

var x = 10;
alert(x);

// foo is considered used here
myFunc(function foo() {
    // ...
}.bind(this));

(function(foo) {
    return foo;
})();

var myFunc;
myFunc = setTimeout(function() {
    // myFunc is considered used
    myFunc();
}, 50);

// Only the second argument from the descructured array is used.
function getY([, y]) {
    return y;
}

exported

In environments outside of CommonJS or ECMAScript modules, you may use var to create a global variable that may be used by other scripts. You can use the /* exported variableName */ comment block to indicate that this variable is being exported and therefore should not be considered unused.

Note that /* exported */ has no effect for any of the following:

  • when the environment is node or commonjs
  • when parserOptions.sourceType is module
  • when ecmaFeatures.globalReturn is true

The line comment // exported variableName will not work as exported is not line-specific.

Examples of correct code for /* exported variableName */ operation:

/* exported global_var */

var global_var = 42;

Options

This rule takes one argument which can be a string or an object. The string settings are the same as those of the vars property (explained below).

By default this rule is enabled with all option for variables and after-used for arguments.

{
    "rules": {
        "no-unused-vars": ["error", { "vars": "all", "args": "after-used", "ignoreRestSiblings": false }]
    }
}

vars

The vars option has two settings:

  • all checks all variables for usage, including those in the global scope. This is the default setting.
  • local checks only that locally-declared variables are used but will allow global variables to be unused.

vars: local

Examples of correct code for the { "vars": "local" } option:

/*eslint no-unused-vars: ["error", { "vars": "local" }]*/
/*global some_unused_var */

some_unused_var = 42;

varsIgnorePattern

The varsIgnorePattern option specifies exceptions not to check for usage: variables whose names match a regexp pattern. For example, variables whose names contain ignored or Ignored.

Examples of correct code for the { "varsIgnorePattern": "[iI]gnored" } option:

/*eslint no-unused-vars: ["error", { "varsIgnorePattern": "[iI]gnored" }]*/

var firstVarIgnored = 1;
var secondVar = 2;
console.log(secondVar);

args

The args option has three settings:

  • after-used - only the last argument must be used. This allows you, for instance, to have two named parameters to a function and as long as you use the second argument, ESLint will not warn you about the first. This is the default setting.
  • all - all named arguments must be used.
  • none - do not check arguments.

args: after-used

Examples of incorrect code for the default { "args": "after-used" } option:

/*eslint no-unused-vars: ["error", { "args": "after-used" }]*/

// 1 error
// "baz" is defined but never used
(function(foo, bar, baz) {
    return bar;
})();

Examples of correct code for the default { "args": "after-used" } option:

/*eslint no-unused-vars: ["error", {"args": "after-used"}]*/

(function(foo, bar, baz) {
    return baz;
})();

args: all

Examples of incorrect code for the { "args": "all" } option:

/*eslint no-unused-vars: ["error", { "args": "all" }]*/

// 2 errors
// "foo" is defined but never used
// "baz" is defined but never used
(function(foo, bar, baz) {
    return bar;
})();

args: none

Examples of correct code for the { "args": "none" } option:

/*eslint no-unused-vars: ["error", { "args": "none" }]*/

(function(foo, bar, baz) {
    return bar;
})();

ignoreRestSiblings

The ignoreRestSiblings option is a boolean (default: false). Using a Rest Property it is possible to "omit" properties from an object, but by default the sibling properties are marked as "unused". With this option enabled the rest property's siblings are ignored.

Examples of correct code for the { "ignoreRestSiblings": true } option:

/*eslint no-unused-vars: ["error", { "ignoreRestSiblings": true }]*/
// 'type' is ignored because it has a rest property sibling.
var { type, ...coords } = data;

argsIgnorePattern

The argsIgnorePattern option specifies exceptions not to check for usage: arguments whose names match a regexp pattern. For example, variables whose names begin with an underscore.

Examples of correct code for the { "argsIgnorePattern": "^_" } option:

/*eslint no-unused-vars: ["error", { "argsIgnorePattern": "^_" }]*/

function foo(x, _y) {
    return x + 1;
}
foo();

caughtErrors

The caughtErrors option is used for catch block arguments validation.

It has two settings:

  • none - do not check error objects. This is the default setting.
  • all - all named arguments must be used.

caughtErrors: none

Not specifying this rule is equivalent of assigning it to none.

Examples of correct code for the { "caughtErrors": "none" } option:

/*eslint no-unused-vars: ["error", { "caughtErrors": "none" }]*/

try {
    //...
} catch (err) {
    console.error("errors");
}

caughtErrors: all

Examples of incorrect code for the { "caughtErrors": "all" } option:

/*eslint no-unused-vars: ["error", { "caughtErrors": "all" }]*/

// 1 error
// "err" is defined but never used
try {
    //...
} catch (err) {
    console.error("errors");
}

caughtErrorsIgnorePattern

The caughtErrorsIgnorePattern option specifies exceptions not to check for usage: catch arguments whose names match a regexp pattern. For example, variables whose names begin with a string 'ignore'.

Examples of correct code for the { "caughtErrorsIgnorePattern": "^ignore" } option:

/*eslint no-unused-vars: ["error", { "caughtErrorsIgnorePattern": "^ignore" }]*/

try {
    //...
} catch (ignoreErr) {
    console.error("errors");
}

When Not To Use It

If you don't want to be notified about unused variables or function arguments, you can safely turn this rule off. Source: http://eslint.org/docs/rules/

'a' was used before it was defined.
Open

  const a = val(a)
Severity: Minor
Found in packages/signal/lib/comparasion.js by eslint

Disallow Early Use (no-use-before-define)

In JavaScript, prior to ES6, variable and function declarations are hoisted to the top of a scope, so it's possible to use identifiers before their formal declarations in code. This can be confusing and some believe it is best to always declare variables and functions before using them.

In ES6, block-level bindings (let and const) introduce a "temporal dead zone" where a ReferenceError will be thrown with any attempt to access the variable before its declaration.

Rule Details

This rule will warn when it encounters a reference to an identifier that has not yet been declared.

Examples of incorrect code for this rule:

/*eslint no-use-before-define: "error"*/
/*eslint-env es6*/

alert(a);
var a = 10;

f();
function f() {}

function g() {
    return b;
}
var b = 1;

// With blockBindings: true
{
    alert(c);
    let c = 1;
}

Examples of correct code for this rule:

/*eslint no-use-before-define: "error"*/
/*eslint-env es6*/

var a;
a = 10;
alert(a);

function f() {}
f(1);

var b = 1;
function g() {
    return b;
}

// With blockBindings: true
{
    let C;
    c++;
}

Options

{
    "no-use-before-define": ["error", { "functions": true, "classes": true }]
}
  • functions (boolean) - The flag which shows whether or not this rule checks function declarations. If this is true, this rule warns every reference to a function before the function declaration. Otherwise, ignores those references. Function declarations are hoisted, so it's safe. Default is true.
  • classes (boolean) - The flag which shows whether or not this rule checks class declarations of upper scopes. If this is true, this rule warns every reference to a class before the class declaration. Otherwise, ignores those references if the declaration is in upper function scopes. Class declarations are not hoisted, so it might be danger. Default is true.
  • variables (boolean) - This flag determines whether or not the rule checks variable declarations in upper scopes. If this is true, the rule warns every reference to a variable before the variable declaration. Otherwise, the rule ignores a reference if the declaration is in an upper scope, while still reporting the reference if it's in the same scope as the declaration. Default is true.

This rule accepts "nofunc" string as an option. "nofunc" is the same as { "functions": false, "classes": true }.

functions

Examples of correct code for the { "functions": false } option:

/*eslint no-use-before-define: ["error", { "functions": false }]*/

f();
function f() {}

classes

Examples of incorrect code for the { "classes": false } option:

/*eslint no-use-before-define: ["error", { "classes": false }]*/
/*eslint-env es6*/

new A();
class A {
}

Examples of correct code for the { "classes": false } option:

/*eslint no-use-before-define: ["error", { "classes": false }]*/
/*eslint-env es6*/

function foo() {
    return new A();
}

class A {
}

variables

Examples of incorrect code for the { "variables": false } option:

/*eslint no-use-before-define: ["error", { "variables": false }]*/

console.log(foo);
var foo = 1;

Examples of correct code for the { "variables": false } option:

/*eslint no-use-before-define: ["error", { "variables": false }]*/

function baz() {
    console.log(foo);
}

var foo = 1;

Source: http://eslint.org/docs/rules/

Extra semicolon.
Open

const fill = require("filled-array");
Severity: Minor
Found in packages/spectral-models/src/dft.js by eslint

require or disallow semicolons instead of ASI (semi)

JavaScript is unique amongst the C-like languages in that it doesn't require semicolons at the end of each statement. In many cases, the JavaScript engine can determine that a semicolon should be in a certain spot and will automatically add it. This feature is known as automatic semicolon insertion (ASI) and is considered one of the more controversial features of JavaScript. For example, the following lines are both valid:

var name = "ESLint"
var website = "eslint.org";

On the first line, the JavaScript engine will automatically insert a semicolon, so this is not considered a syntax error. The JavaScript engine still knows how to interpret the line and knows that the line end indicates the end of the statement.

In the debate over ASI, there are generally two schools of thought. The first is that we should treat ASI as if it didn't exist and always include semicolons manually. The rationale is that it's easier to always include semicolons than to try to remember when they are or are not required, and thus decreases the possibility of introducing an error.

However, the ASI mechanism can sometimes be tricky to people who are using semicolons. For example, consider this code:

return
{
    name: "ESLint"
};

This may look like a return statement that returns an object literal, however, the JavaScript engine will interpret this code as:

return;
{
    name: "ESLint";
}

Effectively, a semicolon is inserted after the return statement, causing the code below it (a labeled literal inside a block) to be unreachable. This rule and the [no-unreachable](no-unreachable.md) rule will protect your code from such cases.

On the other side of the argument are those who says that since semicolons are inserted automatically, they are optional and do not need to be inserted manually. However, the ASI mechanism can also be tricky to people who don't use semicolons. For example, consider this code:

var globalCounter = { }

(function () {
    var n = 0
    globalCounter.increment = function () {
        return ++n
    }
})()

In this example, a semicolon will not be inserted after the first line, causing a run-time error (because an empty object is called as if it's a function). The [no-unexpected-multiline](no-unexpected-multiline.md) rule can protect your code from such cases.

Although ASI allows for more freedom over your coding style, it can also make your code behave in an unexpected way, whether you use semicolons or not. Therefore, it is best to know when ASI takes place and when it does not, and have ESLint protect your code from these potentially unexpected cases. In short, as once described by Isaac Schlueter, a \n character always ends a statement (just like a semicolon) unless one of the following is true:

  1. The statement has an unclosed paren, array literal, or object literal or ends in some other way that is not a valid way to end a statement. (For instance, ending with . or ,.)
  2. The line is -- or ++ (in which case it will decrement/increment the next token.)
  3. It is a for(), while(), do, if(), or else, and there is no {
  4. The next line starts with [, (, +, *, /, -, ,, ., or some other binary operator that can only be found between two tokens in a single expression.

Rule Details

This rule enforces consistent use of semicolons.

Options

This rule has two options, a string option and an object option.

String option:

  • "always" (default) requires semicolons at the end of statements
  • "never" disallows semicolons as the end of statements (except to disambiguate statements beginning with [, (, /, +, or -)

Object option:

  • "omitLastInOneLineBlock": true ignores the last semicolon in a block in which its braces (and therefore the content of the block) are in the same line

always

Examples of incorrect code for this rule with the default "always" option:

/*eslint semi: ["error", "always"]*/

var name = "ESLint"

object.method = function() {
    // ...
}

Examples of correct code for this rule with the default "always" option:

/*eslint semi: "error"*/

var name = "ESLint";

object.method = function() {
    // ...
};

never

Examples of incorrect code for this rule with the "never" option:

/*eslint semi: ["error", "never"]*/

var name = "ESLint";

object.method = function() {
    // ...
};

Examples of correct code for this rule with the "never" option:

/*eslint semi: ["error", "never"]*/

var name = "ESLint"

object.method = function() {
    // ...
}

var name = "ESLint"

;(function() {
    // ...
})()

omitLastInOneLineBlock

Examples of additional correct code for this rule with the "always", { "omitLastInOneLineBlock": true } options:

/*eslint semi: ["error", "always", { "omitLastInOneLineBlock": true}] */

if (foo) { bar() }

if (foo) { bar(); baz() }

When Not To Use It

If you do not want to enforce semicolon usage (or omission) in any particular way, then you can turn this rule off.

Further Reading

Related Rules

  • [no-extra-semi](no-extra-semi.md)
  • [no-unexpected-multiline](no-unexpected-multiline.md)
  • [semi-spacing](semi-spacing.md) Source: http://eslint.org/docs/rules/

Trailing spaces not allowed.
Open

 * 
Severity: Minor
Found in packages/spectral-models/src/dft.js by eslint

disallow trailing whitespace at the end of lines (no-trailing-spaces)

Sometimes in the course of editing files, you can end up with extra whitespace at the end of lines. These whitespace differences can be picked up by source control systems and flagged as diffs, causing frustration for developers. While this extra whitespace causes no functional issues, many code conventions require that trailing spaces be removed before check-in.

Rule Details

This rule disallows trailing whitespace (spaces, tabs, and other Unicode whitespace characters) at the end of lines.

Examples of incorrect code for this rule:

/*eslint no-trailing-spaces: "error"*/

var foo = 0;//•••••
var baz = 5;//••
//•••••

Examples of correct code for this rule:

/*eslint no-trailing-spaces: "error"*/

var foo = 0;
var baz = 5;

Options

This rule has an object option:

  • "skipBlankLines": false (default) disallows trailing whitespace on empty lines
  • "skipBlankLines": true allows trailing whitespace on empty lines

skipBlankLines

Examples of correct code for this rule with the { "skipBlankLines": true } option:

/*eslint no-trailing-spaces: ["error", { "skipBlankLines": true }]*/

var foo = 0;
var baz = 5;
//•••••

Source: http://eslint.org/docs/rules/

Extra semicolon.
Open

  const fft = new FFT(size);
Severity: Minor
Found in packages/spectral-models/src/dft.js by eslint

require or disallow semicolons instead of ASI (semi)

JavaScript is unique amongst the C-like languages in that it doesn't require semicolons at the end of each statement. In many cases, the JavaScript engine can determine that a semicolon should be in a certain spot and will automatically add it. This feature is known as automatic semicolon insertion (ASI) and is considered one of the more controversial features of JavaScript. For example, the following lines are both valid:

var name = "ESLint"
var website = "eslint.org";

On the first line, the JavaScript engine will automatically insert a semicolon, so this is not considered a syntax error. The JavaScript engine still knows how to interpret the line and knows that the line end indicates the end of the statement.

In the debate over ASI, there are generally two schools of thought. The first is that we should treat ASI as if it didn't exist and always include semicolons manually. The rationale is that it's easier to always include semicolons than to try to remember when they are or are not required, and thus decreases the possibility of introducing an error.

However, the ASI mechanism can sometimes be tricky to people who are using semicolons. For example, consider this code:

return
{
    name: "ESLint"
};

This may look like a return statement that returns an object literal, however, the JavaScript engine will interpret this code as:

return;
{
    name: "ESLint";
}

Effectively, a semicolon is inserted after the return statement, causing the code below it (a labeled literal inside a block) to be unreachable. This rule and the [no-unreachable](no-unreachable.md) rule will protect your code from such cases.

On the other side of the argument are those who says that since semicolons are inserted automatically, they are optional and do not need to be inserted manually. However, the ASI mechanism can also be tricky to people who don't use semicolons. For example, consider this code:

var globalCounter = { }

(function () {
    var n = 0
    globalCounter.increment = function () {
        return ++n
    }
})()

In this example, a semicolon will not be inserted after the first line, causing a run-time error (because an empty object is called as if it's a function). The [no-unexpected-multiline](no-unexpected-multiline.md) rule can protect your code from such cases.

Although ASI allows for more freedom over your coding style, it can also make your code behave in an unexpected way, whether you use semicolons or not. Therefore, it is best to know when ASI takes place and when it does not, and have ESLint protect your code from these potentially unexpected cases. In short, as once described by Isaac Schlueter, a \n character always ends a statement (just like a semicolon) unless one of the following is true:

  1. The statement has an unclosed paren, array literal, or object literal or ends in some other way that is not a valid way to end a statement. (For instance, ending with . or ,.)
  2. The line is -- or ++ (in which case it will decrement/increment the next token.)
  3. It is a for(), while(), do, if(), or else, and there is no {
  4. The next line starts with [, (, +, *, /, -, ,, ., or some other binary operator that can only be found between two tokens in a single expression.

Rule Details

This rule enforces consistent use of semicolons.

Options

This rule has two options, a string option and an object option.

String option:

  • "always" (default) requires semicolons at the end of statements
  • "never" disallows semicolons as the end of statements (except to disambiguate statements beginning with [, (, /, +, or -)

Object option:

  • "omitLastInOneLineBlock": true ignores the last semicolon in a block in which its braces (and therefore the content of the block) are in the same line

always

Examples of incorrect code for this rule with the default "always" option:

/*eslint semi: ["error", "always"]*/

var name = "ESLint"

object.method = function() {
    // ...
}

Examples of correct code for this rule with the default "always" option:

/*eslint semi: "error"*/

var name = "ESLint";

object.method = function() {
    // ...
};

never

Examples of incorrect code for this rule with the "never" option:

/*eslint semi: ["error", "never"]*/

var name = "ESLint";

object.method = function() {
    // ...
};

Examples of correct code for this rule with the "never" option:

/*eslint semi: ["error", "never"]*/

var name = "ESLint"

object.method = function() {
    // ...
}

var name = "ESLint"

;(function() {
    // ...
})()

omitLastInOneLineBlock

Examples of additional correct code for this rule with the "always", { "omitLastInOneLineBlock": true } options:

/*eslint semi: ["error", "always", { "omitLastInOneLineBlock": true}] */

if (foo) { bar() }

if (foo) { bar(); baz() }

When Not To Use It

If you do not want to enforce semicolon usage (or omission) in any particular way, then you can turn this rule off.

Further Reading

Related Rules

  • [no-extra-semi](no-extra-semi.md)
  • [no-unexpected-multiline](no-unexpected-multiline.md)
  • [semi-spacing](semi-spacing.md) Source: http://eslint.org/docs/rules/
Severity
Category
Status
Source
Language