Showing 467 of 569 total issues
Remove usage of generic wildcard type. Open
public static <T> CompletableFuture<?> forEachConcurrent(final @Nullable Iterator<T> it, @Nullable final ExecutorService workers,
- Read upRead up
- Exclude checks
It is highly recommended not to use wildcard types as return types. Because the type inference rules are fairly complex it is unlikely the user of that API will know how to use it correctly.
Let's take the example of method returning a "List<? extends Animal>". Is it possible on this list to add a Dog, a Cat, ... we simply don't know. And neither does the compiler, which is why it will not allow such a direct use. The use of wildcard types should be limited to method parameters.
This rule raises an issue when a method returns a wildcard type.
Noncompliant Code Example
List<? extends Animal> getAnimals(){...}
Compliant Solution
List<Animal> getAnimals(){...}
or
List<Dog> getAnimals(){...}
Rename this class. Open
public abstract class SystemUtils extends org.apache.commons.lang3.SystemUtils {
- Read upRead up
- Exclude checks
While it's perfectly legal to give a class the same simple name as a class in another package that it extends or interface it implements, it's confusing and could cause problems in the future.
Noncompliant Code Example
package my.mypackage; public class Foo implements a.b.Foo { // Noncompliant
Compliant Solution
package my.mypackage; public class FooJr implements a.b.Foo {
Refactor this method to reduce its Cognitive Complexity from 22 to the 15 allowed. Open
BuilderImpl(final Class<?> builderInterface, final Class<?> targetClass, final Object... constructorArgs) {
- Read upRead up
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.
See
Remove usage of generic wildcard type. Open
public ClassDescriptor<?> getParent() {
- Read upRead up
- Exclude checks
It is highly recommended not to use wildcard types as return types. Because the type inference rules are fairly complex it is unlikely the user of that API will know how to use it correctly.
Let's take the example of method returning a "List<? extends Animal>". Is it possible on this list to add a Dog, a Cat, ... we simply don't know. And neither does the compiler, which is why it will not allow such a direct use. The use of wildcard types should be limited to method parameters.
This rule raises an issue when a method returns a wildcard type.
Noncompliant Code Example
List<? extends Animal> getAnimals(){...}
Compliant Solution
List<Animal> getAnimals(){...}
or
List<Dog> getAnimals(){...}
Add a private constructor to hide the implicit public one. Open
public abstract class Loggers {
- Read upRead up
- Exclude checks
Utility classes, which are collections of static
members, are not meant to be instantiated. Even abstract utility classes, which can
be extended, should not have public constructors.
Java adds an implicit public constructor to every class which does not define at least one explicitly. Hence, at least one non-public constructor should be defined.
Noncompliant Code Example
class StringUtils { // Noncompliant public static String concatenate(String s1, String s2) { return s1 + s2; } }
Compliant Solution
class StringUtils { // Compliant private StringUtils() { throw new IllegalStateException("Utility class"); } public static String concatenate(String s1, String s2) { return s1 + s2; } }
Exceptions
When class contains public static void main(String[] args)
method it is not considered as utility class and will be ignored by this
rule.
Define a constant instead of duplicating this literal "] not found in class [" 4 times. Open
throw new ReflectionException("Field [" + fieldName + "] not found in class [" + clazz.getName() + "].");
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "Field [" 4 times. Open
throw new ReflectionException("Field [" + fieldName + "] not found in class [" + clazz.getName() + "].");
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
This accessibility bypass should be removed. Open
field.set(obj, value);
- Read upRead up
- Exclude checks
This rule raises an issue when reflection is used to change the visibility of a class, method or field, and when it is used to directly update a field value. Altering or bypassing the accessibility of classes, methods, or fields violates the encapsulation principle and could lead to run-time errors.
Noncompliant Code Example
public void makeItPublic(String methodName) throws NoSuchMethodException { this.getClass().getMethod(methodName).setAccessible(true); // Noncompliant } public void setItAnyway(String fieldName, int value) { this.getClass().getDeclaredField(fieldName).setInt(this, value); // Noncompliant; bypasses controls in setter }
See
- CERT, SEC05-J. - Do not use reflection to increase accessibility of classes, methods, or fields
Remove usage of generic wildcard type. Open
public Constructor<?> getConstructor() {
- Read upRead up
- Exclude checks
It is highly recommended not to use wildcard types as return types. Because the type inference rules are fairly complex it is unlikely the user of that API will know how to use it correctly.
Let's take the example of method returning a "List<? extends Animal>". Is it possible on this list to add a Dog, a Cat, ... we simply don't know. And neither does the compiler, which is why it will not allow such a direct use. The use of wildcard types should be limited to method parameters.
This rule raises an issue when a method returns a wildcard type.
Noncompliant Code Example
List<? extends Animal> getAnimals(){...}
Compliant Solution
List<Animal> getAnimals(){...}
or
List<Dog> getAnimals(){...}
Rename "minimumFileAge" which hides the field declared at line 117. Open
final var minimumFileAge = this.minimumFileAge;
- Read upRead up
- Exclude checks
Overriding or shadowing a variable declared in an outer scope can strongly impact the readability, and therefore the maintainability, of a piece of code. Further, it could lead maintainers to introduce bugs because they think they're using one variable but are really using another.
Noncompliant Code Example
class Foo { public int myField; public void doSomething() { int myField = 0; ... } }
See
- CERT, DCL01-C. - Do not reuse variable names in subscopes
- CERT, DCL51-J. - Do not shadow or obscure identifiers in subscopes
Define a constant instead of duplicating this literal "changeit" 4 times. Open
"-storepass", "changeit", //
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Call "remove()" on "ciphers". Open
private final ThreadLocal<Cipher> ciphers = ThreadLocal.withInitial(() -> {
- Read upRead up
- Exclude checks
ThreadLocal
variables are supposed to be garbage collected once the holding thread is no longer alive. Memory leaks can occur when
holding threads are re-used which is the case on application servers using pool of threads.
To avoid such problems, it is recommended to always clean up ThreadLocal
variables using the remove()
method to remove
the current thread’s value for the ThreadLocal
variable.
In addition, calling set(null)
to remove the value might keep the reference to this
pointer in the map, which can cause
memory leak in some scenarios. Using remove
is safer to avoid this issue.
Noncompliant Code Example
public class ThreadLocalUserSession implements UserSession { private static final ThreadLocal<UserSession> DELEGATE = new ThreadLocal<>(); public UserSession get() { UserSession session = DELEGATE.get(); if (session != null) { return session; } throw new UnauthorizedException("User is not authenticated"); } public void set(UserSession session) { DELEGATE.set(session); } public void incorrectCleanup() { DELEGATE.set(null); // Noncompliant } // some other methods without a call to DELEGATE.remove() }
Compliant Solution
public class ThreadLocalUserSession implements UserSession { private static final ThreadLocal<UserSession> DELEGATE = new ThreadLocal<>(); public UserSession get() { UserSession session = DELEGATE.get(); if (session != null) { return session; } throw new UnauthorizedException("User is not authenticated"); } public void set(UserSession session) { DELEGATE.set(session); } public void unload() { DELEGATE.remove(); // Compliant } // ... }
Exceptions
Rule will not detect non-private ThreadLocal
variables, because remove()
can be called from another class.
See
Remove this useless assignment; "file" already holds the assigned value along all execution paths. Open
file = _notNull(argumentName, file);
- Read upRead up
- Exclude checks
The transitive property says that if a == b
and b == c
, then a == c
. In such cases, there's no point in
assigning a
to c
or vice versa because they're already equivalent.
This rule raises an issue when an assignment is useless because the assigned-to variable already holds the value on all execution paths.
Noncompliant Code Example
a = b; c = a; b = c; // Noncompliant: c and b are already the same
Compliant Solution
a = b; c = a;
Define a constant instead of duplicating this literal "argumentName" 46 times. Open
_notNull("argumentName", argumentName);
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal " or greater but is " 4 times. Open
throw _createIllegalArgumentException(argumentName, "must be " + min + " or greater but is " + value);
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Make "accept" transient or serializable. Open
public final Predicate<? super V> accept;
- Read upRead up
- Exclude checks
Fields in a Serializable
class must themselves be either Serializable
or transient
even if the class is
never explicitly serialized or deserialized. For instance, under load, most J2EE application frameworks flush objects to disk, and an allegedly
Serializable
object with non-transient, non-serializable data members could cause program crashes, and open the door to attackers. In
general a Serializable
class is expected to fulfil its contract and not have an unexpected behaviour when an instance is serialized.
This rule raises an issue on non-Serializable
fields, and on collection fields when they are not private
(because they
could be assigned non-Serializable
values externally), and when they are assigned non-Serializable
types within the
class.
Noncompliant Code Example
public class Address { //... } public class Person implements Serializable { private static final long serialVersionUID = 1905122041950251207L; private String name; private Address address; // Noncompliant; Address isn't serializable }
Compliant Solution
public class Address implements Serializable { private static final long serialVersionUID = 2405172041950251807L; } public class Person implements Serializable { private static final long serialVersionUID = 1905122041950251207L; private String name; private Address address; }
Exceptions
The alternative to making all members serializable
or transient
is to implement special methods which take on the
responsibility of properly serializing and de-serializing the object. This rule ignores classes which implement the following methods:
private void writeObject(java.io.ObjectOutputStream out) throws IOException private void readObject(java.io.ObjectInputStream in) throws IOException, ClassNotFoundException;
See
- MITRE, CWE-594 - Saving Unserializable Objects to Disk
- Oracle Java 6, Serializable
- Oracle Java 7, Serializable
Add a nested comment explaining why this method is empty, throw an UnsupportedOperationException or complete the implementation. Open
public void dispose() {
- Read upRead up
- Exclude checks
There are several reasons for a method not to have a method body:
- It is an unintentional omission, and should be fixed to prevent an unexpected behavior in production.
- It is not yet, or never will be, supported. In this case an
UnsupportedOperationException
should be thrown. - The method is an intentionally-blank override. In this case a nested comment should explain the reason for the blank override.
Noncompliant Code Example
public void doSomething() { } public void doSomethingElse() { }
Compliant Solution
@Override public void doSomething() { // Do nothing because of X and Y. } @Override public void doSomethingElse() { throw new UnsupportedOperationException(); }
Exceptions
Default (no-argument) constructors are ignored when there are other constructors in the class, as are empty methods in abstract classes.
public abstract class Animal { void speak() { // default implementation ignored } }
Define a constant instead of duplicating this literal "serviceInstance" 3 times. Open
Args.notNull("serviceInstance", serviceInstance);
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Add a private constructor to hide the implicit public one. Open
public abstract class JPAUtils {
- Read upRead up
- Exclude checks
Utility classes, which are collections of static
members, are not meant to be instantiated. Even abstract utility classes, which can
be extended, should not have public constructors.
Java adds an implicit public constructor to every class which does not define at least one explicitly. Hence, at least one non-public constructor should be defined.
Noncompliant Code Example
class StringUtils { // Noncompliant public static String concatenate(String s1, String s2) { return s1 + s2; } }
Compliant Solution
class StringUtils { // Compliant private StringUtils() { throw new IllegalStateException("Utility class"); } public static String concatenate(String s1, String s2) { return s1 + s2; } }
Exceptions
When class contains public static void main(String[] args)
method it is not considered as utility class and will be ignored by this
rule.
Add a private constructor to hide the implicit public one. Open
public abstract class AbstractJPAEntity_ {
- Read upRead up
- Exclude checks
Utility classes, which are collections of static
members, are not meant to be instantiated. Even abstract utility classes, which can
be extended, should not have public constructors.
Java adds an implicit public constructor to every class which does not define at least one explicitly. Hence, at least one non-public constructor should be defined.
Noncompliant Code Example
class StringUtils { // Noncompliant public static String concatenate(String s1, String s2) { return s1 + s2; } }
Compliant Solution
class StringUtils { // Compliant private StringUtils() { throw new IllegalStateException("Utility class"); } public static String concatenate(String s1, String s2) { return s1 + s2; } }
Exceptions
When class contains public static void main(String[] args)
method it is not considered as utility class and will be ignored by this
rule.