sebthom/jstuff

View on GitHub

Showing 467 of 569 total issues

This block of commented-out lines of code should be removed.
Open

               // outputStream.write(new String(cbuf, off, len).getBytes(getCharacterEncoding()));

Programmers should not comment out code as it bloats programs and reduces readability.

Unused code should be deleted and can be retrieved from source control history if required.

This block of commented-out lines of code should be removed.
Open

         } else { // if (quotedWith != null)

Programmers should not comment out code as it bloats programs and reduces readability.

Unused code should be deleted and can be retrieved from source control history if required.

Add a private constructor to hide the implicit public one.
Open

public abstract class XPathExpressions {

Utility classes, which are collections of static members, are not meant to be instantiated. Even abstract utility classes, which can be extended, should not have public constructors.

Java adds an implicit public constructor to every class which does not define at least one explicitly. Hence, at least one non-public constructor should be defined.

Noncompliant Code Example

class StringUtils { // Noncompliant

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Compliant Solution

class StringUtils { // Compliant

  private StringUtils() {
    throw new IllegalStateException("Utility class");
  }

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Exceptions

When class contains public static void main(String[] args) method it is not considered as utility class and will be ignored by this rule.

Define a constant instead of duplicating this literal "jarDirectory" 3 times.
Open

      Args.notNull("jarDirectory", jarDirectory);

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Call "remove()" on "xmlInputFactory".
Open

   private final ThreadLocal<XMLInputFactory> xmlInputFactory = ThreadLocal.withInitial(this::createXMLInputFactory);

ThreadLocal variables are supposed to be garbage collected once the holding thread is no longer alive. Memory leaks can occur when holding threads are re-used which is the case on application servers using pool of threads.

To avoid such problems, it is recommended to always clean up ThreadLocal variables using the remove() method to remove the current thread’s value for the ThreadLocal variable.

In addition, calling set(null) to remove the value might keep the reference to this pointer in the map, which can cause memory leak in some scenarios. Using remove is safer to avoid this issue.

Noncompliant Code Example

public class ThreadLocalUserSession implements UserSession {

  private static final ThreadLocal<UserSession> DELEGATE = new ThreadLocal<>();

  public UserSession get() {
    UserSession session = DELEGATE.get();
    if (session != null) {
      return session;
    }
    throw new UnauthorizedException("User is not authenticated");
  }

  public void set(UserSession session) {
    DELEGATE.set(session);
  }

   public void incorrectCleanup() {
     DELEGATE.set(null); // Noncompliant
   }

  // some other methods without a call to DELEGATE.remove()
}

Compliant Solution

public class ThreadLocalUserSession implements UserSession {

  private static final ThreadLocal<UserSession> DELEGATE = new ThreadLocal<>();

  public UserSession get() {
    UserSession session = DELEGATE.get();
    if (session != null) {
      return session;
    }
    throw new UnauthorizedException("User is not authenticated");
  }

  public void set(UserSession session) {
    DELEGATE.set(session);
  }

  public void unload() {
    DELEGATE.remove(); // Compliant
  }

  // ...
}

Exceptions

Rule will not detect non-private ThreadLocal variables, because remove() can be called from another class.

See

Define a constant instead of duplicating this literal "Catched " 3 times.
Open

         effectiveMessage = message == null || message.isEmpty() ? "Catched " : message;

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Synchronize this method to match the synchronization on "setFormatter".
Open

   public Formatter getFormatter() {

When one part of a getter/setter pair is synchronized the other part should be too. Failure to synchronize both sides of a pair may result in inconsistent behavior at runtime as callers access an inconsistent method state.

This rule raises an issue when either the method or the contents of one method in a getter/setter pair are synchrnoized but the other is not.

Noncompliant Code Example

public class Person {
  String name;
  int age;

  public synchronized void setName(String name) {
    this.name = name;
  }

  public String getName() {  // Noncompliant
    return this.name;
  }

  public void setAge(int age) {  // Noncompliant
    this.age = age;
  }

  public int getAge() {
    synchronized (this) {
      return this.age;
    }
  }
}

Compliant Solution

public class Person {
  String name;
  int age;

  public synchronized void setName(String name) {
    this.name = name;
  }

  public synchronized String getName() {
    return this.name;
  }

  public void setAge(int age) {
    synchronized (this) {
      this.age = age;
   }
  }

  public int getAge() {
    synchronized (this) {
      return this.age;
    }
  }
}

See

  • CERT, VNA01-J. - Ensure visibility of shared references to immutable objects

Make this method "synchronized" to match the parent class implementation.
Open

   public void setEncoding(final @Nullable String encoding) throws UnsupportedOperationException {

When @Overrides of synchronized methods are not themselves synchronized, the result can be improper synchronization as callers rely on the thread-safety promised by the parent class.

Noncompliant Code Example

public class Parent {

  synchronized void foo() {
    //...
  }
}

public class Child extends Parent {

 @Override
  public void foo () {  // Noncompliant
    // ...
    super.foo();
  }
}

Compliant Solution

public class Parent {

  synchronized void foo() {
    //...
  }
}

public class Child extends Parent {

  @Override
  synchronized void foo () {
    // ...
    super.foo();
  }
}

See

  • CERT, TSM00-J - Do not override thread-safe methods with methods that are not thread-safe

Refactor this method to reduce its Cognitive Complexity from 27 to the 15 allowed.
Open

   public static <T extends Annotation> T create(final Class<T> annotationType, final @Nullable Map<String, Object> attributes)

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Define a constant instead of duplicating this literal "member" 8 times.
Open

      Args.notNull("member", member);

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Rename this class.
Open

public abstract class Beans extends java.beans.Beans {

While it's perfectly legal to give a class the same simple name as a class in another package that it extends or interface it implements, it's confusing and could cause problems in the future.

Noncompliant Code Example

package my.mypackage;

public class Foo implements a.b.Foo { // Noncompliant

Compliant Solution

package my.mypackage;

public class FooJr implements a.b.Foo {

Define a constant instead of duplicating this literal "clazz" 9 times.
Open

      Args.notNull("clazz", clazz);

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

This accessibility bypass should be removed.
Open

         field.set(obj, value);

This rule raises an issue when reflection is used to change the visibility of a class, method or field, and when it is used to directly update a field value. Altering or bypassing the accessibility of classes, methods, or fields violates the encapsulation principle and could lead to run-time errors.

Noncompliant Code Example

public void makeItPublic(String methodName) throws NoSuchMethodException {

  this.getClass().getMethod(methodName).setAccessible(true); // Noncompliant
}

public void setItAnyway(String fieldName, int value) {
  this.getClass().getDeclaredField(fieldName).setInt(this, value); // Noncompliant; bypasses controls in setter
}

See

  • CERT, SEC05-J. - Do not use reflection to increase accessibility of classes, methods, or fields

Define a constant instead of duplicating this literal "should never be reached." 3 times.
Open

      throw new AssertionError("should never be reached.");

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Make this method "synchronized" to match the parent class implementation.
Open

   public void reset() {

When @Overrides of synchronized methods are not themselves synchronized, the result can be improper synchronization as callers rely on the thread-safety promised by the parent class.

Noncompliant Code Example

public class Parent {

  synchronized void foo() {
    //...
  }
}

public class Child extends Parent {

 @Override
  public void foo () {  // Noncompliant
    // ...
    super.foo();
  }
}

Compliant Solution

public class Parent {

  synchronized void foo() {
    //...
  }
}

public class Child extends Parent {

  @Override
  synchronized void foo () {
    // ...
    super.foo();
  }
}

See

  • CERT, TSM00-J - Do not override thread-safe methods with methods that are not thread-safe

Rename "suffix" which hides the field declared at line 124.
Open

         final var suffix = this.suffix;

Overriding or shadowing a variable declared in an outer scope can strongly impact the readability, and therefore the maintainability, of a piece of code. Further, it could lead maintainers to introduce bugs because they think they're using one variable but are really using another.

Noncompliant Code Example

class Foo {
  public int myField;

  public void doSomething() {
    int myField = 0;
    ...
  }
}

See

Extract this nested ternary operation into an independent statement.
Open

         (o1, o2) -> o1.compressTimeMS < o2.compressTimeMS ? -1 : o1.compressTimeMS == o2.compressTimeMS ? 0 : 1;

Just because you can do something, doesn't mean you should, and that's the case with nested ternary operations. Nesting ternary operators results in the kind of code that may seem clear as day when you write it, but six months later will leave maintainers (or worse - future you) scratching their heads and cursing.

Instead, err on the side of clarity, and use another line to express the nested operation as a separate statement.

Noncompliant Code Example

public String getReadableStatus(Job j) {
  return j.isRunning() ? "Running" : j.hasErrors() ? "Failed" : "Succeeded";  // Noncompliant
}

Compliant Solution

public String getReadableStatus(Job j) {
  if (j.isRunning()) {
    return "Running";
  }
  return j.hasErrors() ? "Failed" : "Succeeded";
}

Define a constant instead of duplicating this literal "isExpired" 3 times.
Open

      Args.notNull("isExpired", isExpired);

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Add a private constructor to hide the implicit public one.
Open

   protected static final class LazyInitialized {

Utility classes, which are collections of static members, are not meant to be instantiated. Even abstract utility classes, which can be extended, should not have public constructors.

Java adds an implicit public constructor to every class which does not define at least one explicitly. Hence, at least one non-public constructor should be defined.

Noncompliant Code Example

class StringUtils { // Noncompliant

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Compliant Solution

class StringUtils { // Compliant

  private StringUtils() {
    throw new IllegalStateException("Utility class");
  }

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Exceptions

When class contains public static void main(String[] args) method it is not considered as utility class and will be ignored by this rule.

Replace this use of System.out or System.err by a logger.
Open

            System.out.println(String.format(" -> result: %,5d ms/round | %,7.2f ops/s | %,5.2f ms/op", durationMS, iterationsPerSecond,

When logging a message there are several important requirements which must be fulfilled:

  • The user must be able to easily retrieve the logs
  • The format of all logged message must be uniform to allow the user to easily read the log
  • Logged data must actually be recorded
  • Sensitive data must only be logged securely

If a program directly writes to the standard outputs, there is absolutely no way to comply with those requirements. That's why defining and using a dedicated logger is highly recommended.

Noncompliant Code Example

System.out.println("My Message");  // Noncompliant

Compliant Solution

logger.log("My Message");

See

Severity
Category
Status
Source
Language