Showing 116 of 116 total issues
Method state_created?
has a Cognitive Complexity of 11 (exceeds 5 allowed). Consider refactoring. Open
def state_created?(app, gear_groups, deployments)
# this state exists, but only within the first seconds before the original deployment is applied
return true if gear_groups[0][:gears].all? { |gear| gear[:state] == 'new' }
if app[:keep_deployments].to_i > 1
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function onOAuthComplete
has a Cognitive Complexity of 10 (exceeds 5 allowed). Consider refactoring. Open
window.onOAuthComplete = function onOAuthComplete(token,OAuthSchemeKey) {
if(token) {
if(token.error) {
var checkbox = $('input[type=checkbox],.secured')
checkbox.each(function(pos){
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method set
has a Cognitive Complexity of 10 (exceeds 5 allowed). Consider refactoring. Open
def set(entity)
update_timestamps(entity)
# finally save to the DB
if entity.id.nil?
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method application_state
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def application_state(app, retrieved_dynos = nil)
# 1: created, both repo and slug are nil
return Enums::ApplicationStates::CREATED unless repo_or_slug_content?(app)
# all subsequent states require dynos to be determined
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method tar
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def tar(path)
string_io = StringIO.new('')
Gem::Package::TarWriter.new(string_io) do |tar|
Find.find(path) do |file|
# do not include the git files
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method add_common_request_params
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def add_common_request_params(params)
common_params = { connection_timeout: 610, write_timeout: 600, read_timeout: 600 }
# allow to follow redirects in the APIs
allowed_status_codes = params.key?(:expects) ? [*params[:expects]] : []
allowed_status_codes.concat([301, 302, 303, 307, 308]) unless params[:follow_redirects] == false
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method setup
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def setup
# perform the setup only once
return if @adapters
# Initialize the application (import adapters, load DAOs, ...)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method handle_error
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def handle_error(error)
cf_error = error.body.is_a?(Hash) ? error.body[:code] : nil
case error.status
when 400
handle_400_error(error, cf_error)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method latest_release
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def latest_release(application_id, retrieved_dynos = nil)
dynos = web_dynos(application_id, retrieved_dynos)
if dynos.nil? || dynos.empty?
log.debug 'no dynos for build detection, fallback to latest release version'
# this approach might be wrong if the app is rolled-back to a previous release
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method runtimes_to_install
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def runtimes_to_install(application)
return [] unless application[:runtimes]
runtimes_to_install = []
application[:runtimes].each do |runtime_identifier|
# we do not need to install native buildpacks
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Similar blocks of code found in 2 locations. Consider refactoring. Open
if (this.options.gfm) {
if (this.options.tables) {
this.rules = block.tables;
} else {
this.rules = block.gfm;
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 53.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
if (this.options.gfm) {
if (this.options.breaks) {
this.rules = inline.breaks;
} else {
this.rules = inline.gfm;
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 53.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
post ':provider_id/endpoints' do
# load the vendor and verify it is valid
provider = load_provider
# If validation passed, all required fields are available and not null (unless explicitly allowed).
# Fields that were not allowed (id, ...) are excluded via declared(params)
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 42.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
post ':vendor_id/providers' do
# load the vendor and verify it is valid
vendor = load_vendor
# If validation passed, all required fields are available and not null (unless explicitly allowed).
# Fields that were not allowed (id, ...) are excluded via declared(params)
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 42.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Avoid deeply nested control flow statements. Open
for(var i=0; i < requiredScopes.length; i++) {
var s = requiredScopes[i];
if(window.enabledScopes && window.enabledScopes.indexOf(s) == -1) {
diff.push(s);
}
Method write_zip_entries
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def write_zip_entries(path, sub_path, io)
search_path = File.join(path, sub_path)
Find.find(path) do |file|
zip_file_path = file.sub(%r{^#{Regexp.escape search_path}\/?}, '')
next if @exclude_git && zip_file_path.start_with?('.git')
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Avoid deeply nested control flow statements. Open
if(diff.length > 0){
o = v.parentNode.parentNode;
$(o.parentNode).find('.api-ic.ic-on').addClass('ic-off');
$(o.parentNode).find('.api-ic.ic-on').removeClass('ic-on');
Avoid deeply nested control flow statements. Open
if (!loose) loose = next;
Method application_state
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def application_state(app_resource)
if app_resource[:entity][:state] == 'STARTED'
# 1: crashed
return Enums::ApplicationStates::CRASHED if app_resource[:entity][:package_state] == 'FAILED'
# 1: started
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Avoid deeply nested control flow statements. Open
for(scope in auth.scopes) {
scopes.push({scope: scope, description: auth.scopes[scope], OAuthSchemeKey: key});
}