File rijndael.py
has 1029 lines of code (exceeds 250 allowed). Consider refactoring. Open
# Authors:
# Bram Cohen
# Trevor Perrin - various changes
#
# See the LICENSE file for legal information regarding use of this file.
Function __init__
has a Cognitive Complexity of 25 (exceeds 5 allowed). Consider refactoring. Open
def __init__(self, key, block_size = 16):
"""Initialise the object, derive keys for encryption and decryption."""
if block_size != 16 and block_size != 24 and block_size != 32:
raise ValueError('Invalid block size: ' + str(block_size))
if len(key) != 16 and len(key) != 24 and len(key) != 32:
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Cyclomatic complexity is too high in method __init__. (21) Open
def __init__(self, key, block_size = 16):
"""Initialise the object, derive keys for encryption and decryption."""
if block_size != 16 and block_size != 24 and block_size != 32:
raise ValueError('Invalid block size: ' + str(block_size))
if len(key) != 16 and len(key) != 24 and len(key) != 32:
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Cyclomatic complexity is too high in class Rijndael. (12) Open
@deprecated_class_name('rijndael')
class Rijndael(object):
"""
Implementation of the AES (formely known as Rijndael) block cipher.
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Function encrypt
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def encrypt(self, plaintext):
"""Encrypt a single block of plaintext."""
if len(plaintext) != self.block_size:
raise ValueError('wrong block length, expected {0} got {1}'
.format(self.block_size, len(plaintext)))
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function decrypt
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def decrypt(self, ciphertext):
"""Decrypt a block of ciphertext."""
if len(ciphertext) != self.block_size:
raise ValueError('wrong block length, expected {0} got {1}'
.format(self.block_size, len(ciphertext)))
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Similar blocks of code found in 14 locations. Consider refactoring. Open
Si = (82, 9, 106, 213, 48, 54, 165, 56,
191, 64, 163, 158, 129, 243, 215, 251,
124, 227, 57, 130, 155, 47, 255, 135,
52, 142, 67, 68, 196, 222, 233, 203,
84, 123, 148, 50, 166, 194, 35, 61,
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 262.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 14 locations. Consider refactoring. Open
T6 = (0x5051f4a7, 0x537e4165, 0xc31a17a4, 0x963a275e,
0xcb3bab6b, 0xf11f9d45, 0xabacfa58, 0x934be303,
0x552030fa, 0xf6ad766d, 0x9188cc76, 0x25f5024c,
0xfc4fe5d7, 0xd7c52acb, 0x80263544, 0x8fb562a3,
0x49deb15a, 0x6725ba1b, 0x9845ea0e, 0xe15dfec0,
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 262.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 14 locations. Consider refactoring. Open
T1 = (0xc66363a5, 0xf87c7c84, 0xee777799, 0xf67b7b8d,
0xfff2f20d, 0xd66b6bbd, 0xde6f6fb1, 0x91c5c554,
0x60303050, 0x2010103, 0xce6767a9, 0x562b2b7d,
0xe7fefe19, 0xb5d7d762, 0x4dababe6, 0xec76769a,
0x8fcaca45, 0x1f82829d, 0x89c9c940, 0xfa7d7d87,
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 262.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 14 locations. Consider refactoring. Open
T8 = (0xf4a75051, 0x4165537e, 0x17a4c31a, 0x275e963a,
0xab6bcb3b, 0x9d45f11f, 0xfa58abac, 0xe303934b,
0x30fa5520, 0x766df6ad, 0xcc769188, 0x24c25f5,
0xe5d7fc4f, 0x2acbd7c5, 0x35448026, 0x62a38fb5,
0xb15a49de, 0xba1b6725, 0xea0e9845, 0xfec0e15d,
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 262.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 14 locations. Consider refactoring. Open
T3 = (0x63a5c663, 0x7c84f87c, 0x7799ee77, 0x7b8df67b,
0xf20dfff2, 0x6bbdd66b, 0x6fb1de6f, 0xc55491c5,
0x30506030, 0x1030201, 0x67a9ce67, 0x2b7d562b,
0xfe19e7fe, 0xd762b5d7, 0xabe64dab, 0x769aec76,
0xca458fca, 0x829d1f82, 0xc94089c9, 0x7d87fa7d,
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 262.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 14 locations. Consider refactoring. Open
T5 = (0x51f4a750, 0x7e416553, 0x1a17a4c3, 0x3a275e96,
0x3bab6bcb, 0x1f9d45f1, 0xacfa58ab, 0x4be30393,
0x2030fa55, 0xad766df6, 0x88cc7691, 0xf5024c25,
0x4fe5d7fc, 0xc52acbd7, 0x26354480, 0xb562a38f,
0xdeb15a49, 0x25ba1b67, 0x45ea0e98, 0x5dfec0e1,
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 262.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 14 locations. Consider refactoring. Open
T2 = (0xa5c66363, 0x84f87c7c, 0x99ee7777, 0x8df67b7b,
0xdfff2f2, 0xbdd66b6b, 0xb1de6f6f, 0x5491c5c5,
0x50603030, 0x3020101, 0xa9ce6767, 0x7d562b2b,
0x19e7fefe, 0x62b5d7d7, 0xe64dabab, 0x9aec7676,
0x458fcaca, 0x9d1f8282, 0x4089c9c9, 0x87fa7d7d,
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 262.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 14 locations. Consider refactoring. Open
U2 = (0x0, 0xb0e090d, 0x161c121a, 0x1d121b17,
0x2c382434, 0x27362d39, 0x3a24362e, 0x312a3f23,
0x58704868, 0x537e4165, 0x4e6c5a72, 0x4562537f,
0x74486c5c, 0x7f466551, 0x62547e46, 0x695a774b,
0xb0e090d0, 0xbbee99dd, 0xa6fc82ca, 0xadf28bc7,
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 262.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 14 locations. Consider refactoring. Open
U3 = (0x0, 0xd0b0e09, 0x1a161c12, 0x171d121b,
0x342c3824, 0x3927362d, 0x2e3a2436, 0x23312a3f,
0x68587048, 0x65537e41, 0x724e6c5a, 0x7f456253,
0x5c74486c, 0x517f4665, 0x4662547e, 0x4b695a77,
0xd0b0e090, 0xddbbee99, 0xcaa6fc82, 0xc7adf28b,
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 262.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 14 locations. Consider refactoring. Open
U4 = (0x0, 0x90d0b0e, 0x121a161c, 0x1b171d12,
0x24342c38, 0x2d392736, 0x362e3a24, 0x3f23312a,
0x48685870, 0x4165537e, 0x5a724e6c, 0x537f4562,
0x6c5c7448, 0x65517f46, 0x7e466254, 0x774b695a,
0x90d0b0e0, 0x99ddbbee, 0x82caa6fc, 0x8bc7adf2,
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 262.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 14 locations. Consider refactoring. Open
T7 = (0xa75051f4, 0x65537e41, 0xa4c31a17, 0x5e963a27,
0x6bcb3bab, 0x45f11f9d, 0x58abacfa, 0x3934be3,
0xfa552030, 0x6df6ad76, 0x769188cc, 0x4c25f502,
0xd7fc4fe5, 0xcbd7c52a, 0x44802635, 0xa38fb562,
0x5a49deb1, 0x1b6725ba, 0xe9845ea, 0xc0e15dfe,
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 262.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 14 locations. Consider refactoring. Open
T4 = (0x6363a5c6, 0x7c7c84f8, 0x777799ee, 0x7b7b8df6,
0xf2f20dff, 0x6b6bbdd6, 0x6f6fb1de, 0xc5c55491,
0x30305060, 0x1010302, 0x6767a9ce, 0x2b2b7d56,
0xfefe19e7, 0xd7d762b5, 0xababe64d, 0x76769aec,
0xcaca458f, 0x82829d1f, 0xc9c94089, 0x7d7d87fa,
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 262.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 14 locations. Consider refactoring. Open
U1 = (0x0, 0xe090d0b, 0x1c121a16, 0x121b171d,
0x3824342c, 0x362d3927, 0x24362e3a, 0x2a3f2331,
0x70486858, 0x7e416553, 0x6c5a724e, 0x62537f45,
0x486c5c74, 0x4665517f, 0x547e4662, 0x5a774b69,
0xe090d0b0, 0xee99ddbb, 0xfc82caa6, 0xf28bc7ad,
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 262.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 14 locations. Consider refactoring. Open
S = (99, 124, 119, 123, 242, 107, 111, 197,
48, 1, 103, 43, 254, 215, 171, 118,
202, 130, 201, 125, 250, 89, 71, 240,
173, 212, 162, 175, 156, 164, 114, 192,
183, 253, 147, 38, 54, 63, 247, 204,
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 262.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
for i in range(BC):
tt = Kd[ROUNDS][i]
result.append((Si[(t[ i ] >> 24) & 0xFF] ^ (tt>>24)) &0xFF)
result.append((Si[(t[(i+s1) % BC] >> 16) & 0xFF] ^ (tt>>16)) &0xFF)
result.append((Si[(t[(i+s2) % BC] >> 8) & 0xFF] ^ (tt>> 8)) &0xFF)
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 255.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
for i in range(BC):
tt = Ke[ROUNDS][i]
result.append((S[(t[ i ] >> 24) & 0xFF] ^ (tt>>24)) & 0xFF)
result.append((S[(t[(i+s1) % BC] >> 16) & 0xFF] ^ (tt>>16)) & 0xFF)
result.append((S[(t[(i+s2) % BC] >> 8) & 0xFF] ^ (tt>> 8)) & 0xFF)
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 255.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
for r in range(1, ROUNDS):
for i in range(BC):
a[i] = (T5[(t[ i ] >> 24) & 0xFF] ^
T6[(t[(i + s1) % BC] >> 16) & 0xFF] ^
T7[(t[(i + s2) % BC] >> 8) & 0xFF] ^
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 203.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
for r in range(1, ROUNDS):
for i in range(BC):
a[i] = (T1[(t[ i ] >> 24) & 0xFF] ^
T2[(t[(i + s1) % BC] >> 16) & 0xFF] ^
T3[(t[(i + s2) % BC] >> 8) & 0xFF] ^
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 203.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
t.append((plaintext[i * 4 ] << 24 |
plaintext[i * 4 + 1] << 16 |
plaintext[i * 4 + 2] << 8 |
plaintext[i * 4 + 3] ) ^ Ke[0][i])
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 121.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
t[i] = (ciphertext[i * 4 ] << 24 |
ciphertext[i * 4 + 1] << 16 |
ciphertext[i * 4 + 2] << 8 |
ciphertext[i * 4 + 3] ) ^ Kd[0][i]
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 121.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Identical blocks of code found in 2 locations. Consider refactoring. Open
while j < KC and t < ROUND_KEY_COUNT:
Ke[t // BC][t % BC] = tk[j]
Kd[ROUNDS - (t // BC)][t % BC] = tk[j]
j += 1
t += 1
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 111.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Identical blocks of code found in 2 locations. Consider refactoring. Open
while j < KC and t < ROUND_KEY_COUNT:
Ke[t // BC][t % BC] = tk[j]
Kd[ROUNDS - (t // BC)][t % BC] = tk[j]
j += 1
t += 1
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 111.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Identical blocks of code found in 2 locations. Consider refactoring. Open
if BC == 4:
SC = 0
elif BC == 6:
SC = 1
else:
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 37.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Identical blocks of code found in 2 locations. Consider refactoring. Open
if BC == 4:
SC = 0
elif BC == 6:
SC = 1
else:
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 37.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
if len(ciphertext) != self.block_size:
raise ValueError('wrong block length, expected {0} got {1}'
.format(self.block_size, len(ciphertext)))
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 36.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
if len(plaintext) != self.block_size:
raise ValueError('wrong block length, expected {0} got {1}'
.format(self.block_size, len(plaintext)))
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 36.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Whitespace after '[' Open
T8[ t[(i + s3) % BC] & 0xFF] ) ^ Kd[r][i]
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Multiple spaces before operator Open
tk[KC // 2] ^= (S[ tt & 0xFF] & 0xFF) ^ \
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Multiple spaces before operator Open
tk[KC // 2] ^= (S[ tt & 0xFF] & 0xFF) ^ \
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Multiple spaces after operator Open
U3[(tt >> 8) & 0xFF] ^ \
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Multiple spaces after operator Open
plaintext[i * 4 + 2] << 8 |
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Continuation line over-indented for visual indent Open
(S[(tt >> 8) & 0xFF] & 0xFF) << 8 ^ \
- Read upRead up
- Exclude checks
Continuation lines indentation.
Continuation lines should align wrapped elements either vertically
using Python's implicit line joining inside parentheses, brackets
and braces, or using a hanging indent.
When using a hanging indent these considerations should be applied:
- there should be no arguments on the first line, and
- further indentation should be used to clearly distinguish itself
as a continuation line.
Okay: a = (\n)
E123: a = (\n )
Okay: a = (\n 42)
E121: a = (\n 42)
E122: a = (\n42)
E123: a = (\n 42\n )
E124: a = (24,\n 42\n)
E125: if (\n b):\n pass
E126: a = (\n 42)
E127: a = (24,\n 42)
E128: a = (24,\n 42)
E129: if (a or\n b):\n pass
E131: a = (\n 42\n 24)
Whitespace after '[' Open
U4[ tt & 0xFF]
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Multiple spaces before operator Open
U4[ tt & 0xFF]
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Whitespace before ']' Open
a[i] = (T1[(t[ i ] >> 24) & 0xFF] ^
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Multiple spaces after operator Open
result.append((S[ t[(i+s3) % BC] & 0xFF] ^ tt ) & 0xFF)
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Missing whitespace around operator Open
result.append((Si[ t[(i+s3) % BC] & 0xFF] ^ tt ) &0xFF)
- Read upRead up
- Exclude checks
Surround operators with a single space on either side.
- Always surround these binary operators with a single space on
either side: assignment (=), augmented assignment (+=, -= etc.),
comparisons (==, <, >, !=, <=, >=, in, not in, is, is not),
Booleans (and, or, not).
- If operators with different priorities are used, consider adding
whitespace around the operators with the lowest priorities.
Okay: i = i + 1
Okay: submitted += 1
Okay: x = x * 2 - 1
Okay: hypot2 = x * x + y * y
Okay: c = (a + b) * (a - b)
Okay: foo(bar, key='word', *args, **kwargs)
Okay: alpha[:-i]
E225: i=i+1
E225: submitted +=1
E225: x = x /2 - 1
E225: z = x **y
E225: z = 1and 1
E226: c = (a+b) * (a-b)
E226: hypot2 = x*x + y*y
E227: c = a|b
E228: msg = fmt%(errno, errmsg)
Multiple spaces after operator Open
result.append((Si[ t[(i+s3) % BC] & 0xFF] ^ tt ) &0xFF)
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Continuation line over-indented for visual indent Open
U2[(tt >> 16) & 0xFF] ^ \
- Read upRead up
- Exclude checks
Continuation lines indentation.
Continuation lines should align wrapped elements either vertically
using Python's implicit line joining inside parentheses, brackets
and braces, or using a hanging indent.
When using a hanging indent these considerations should be applied:
- there should be no arguments on the first line, and
- further indentation should be used to clearly distinguish itself
as a continuation line.
Okay: a = (\n)
E123: a = (\n )
Okay: a = (\n 42)
E121: a = (\n 42)
E122: a = (\n42)
E123: a = (\n 42\n )
E124: a = (24,\n 42\n)
E125: if (\n b):\n pass
E126: a = (\n 42)
E127: a = (24,\n 42)
E128: a = (24,\n 42)
E129: if (a or\n b):\n pass
E131: a = (\n 42\n 24)
Whitespace after '[' Open
T4[ t[(i + s3) % BC] & 0xFF] ) ^ Ke[r][i]
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Whitespace before ')' Open
T4[ t[(i + s3) % BC] & 0xFF] ) ^ Ke[r][i]
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Whitespace before ')' Open
ciphertext[i * 4 + 3] ) ^ Kd[0][i]
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Missing whitespace around bitwise or shift operator Open
result.append((Si[(t[(i+s1) % BC] >> 16) & 0xFF] ^ (tt>>16)) &0xFF)
- Read upRead up
- Exclude checks
Surround operators with a single space on either side.
- Always surround these binary operators with a single space on
either side: assignment (=), augmented assignment (+=, -= etc.),
comparisons (==, <, >, !=, <=, >=, in, not in, is, is not),
Booleans (and, or, not).
- If operators with different priorities are used, consider adding
whitespace around the operators with the lowest priorities.
Okay: i = i + 1
Okay: submitted += 1
Okay: x = x * 2 - 1
Okay: hypot2 = x * x + y * y
Okay: c = (a + b) * (a - b)
Okay: foo(bar, key='word', *args, **kwargs)
Okay: alpha[:-i]
E225: i=i+1
E225: submitted +=1
E225: x = x /2 - 1
E225: z = x **y
E225: z = 1and 1
E226: c = (a+b) * (a-b)
E226: hypot2 = x*x + y*y
E227: c = a|b
E228: msg = fmt%(errno, errmsg)
Whitespace after '[' Open
result.append((Si[ t[(i+s3) % BC] & 0xFF] ^ tt ) &0xFF)
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Expected 2 blank lines, found 1 Open
def decrypt(key, block):
- Read upRead up
- Exclude checks
Separate top-level function and class definitions with two blank lines.
Method definitions inside a class are separated by a single blank
line.
Extra blank lines may be used (sparingly) to separate groups of
related functions. Blank lines may be omitted between a bunch of
related one-liners (e.g. a set of dummy implementations).
Use blank lines in functions, sparingly, to indicate logical
sections.
Okay: def a():\n pass\n\n\ndef b():\n pass
Okay: def a():\n pass\n\n\nasync def b():\n pass
Okay: def a():\n pass\n\n\n# Foo\n# Bar\n\ndef b():\n pass
Okay: default = 1\nfoo = 1
Okay: classify = 1\nfoo = 1
E301: class Foo:\n b = 0\n def bar():\n pass
E302: def a():\n pass\n\ndef b(n):\n pass
E302: def a():\n pass\n\nasync def b(n):\n pass
E303: def a():\n pass\n\n\n\ndef b(n):\n pass
E303: def a():\n\n\n\n pass
E304: @decorator\n\ndef a():\n pass
E305: def a():\n pass\na()
E306: def a():\n def b():\n pass\n def c():\n pass
Multiple spaces after operator Open
T3[(t[(i + s2) % BC] >> 8) & 0xFF] ^
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Missing whitespace around bitwise or shift operator Open
result.append((S[(t[ i ] >> 24) & 0xFF] ^ (tt>>24)) & 0xFF)
- Read upRead up
- Exclude checks
Surround operators with a single space on either side.
- Always surround these binary operators with a single space on
either side: assignment (=), augmented assignment (+=, -= etc.),
comparisons (==, <, >, !=, <=, >=, in, not in, is, is not),
Booleans (and, or, not).
- If operators with different priorities are used, consider adding
whitespace around the operators with the lowest priorities.
Okay: i = i + 1
Okay: submitted += 1
Okay: x = x * 2 - 1
Okay: hypot2 = x * x + y * y
Okay: c = (a + b) * (a - b)
Okay: foo(bar, key='word', *args, **kwargs)
Okay: alpha[:-i]
E225: i=i+1
E225: submitted +=1
E225: x = x /2 - 1
E225: z = x **y
E225: z = 1and 1
E226: c = (a+b) * (a-b)
E226: hypot2 = x*x + y*y
E227: c = a|b
E228: msg = fmt%(errno, errmsg)
Missing whitespace around bitwise or shift operator Open
result.append((S[(t[(i+s1) % BC] >> 16) & 0xFF] ^ (tt>>16)) & 0xFF)
- Read upRead up
- Exclude checks
Surround operators with a single space on either side.
- Always surround these binary operators with a single space on
either side: assignment (=), augmented assignment (+=, -= etc.),
comparisons (==, <, >, !=, <=, >=, in, not in, is, is not),
Booleans (and, or, not).
- If operators with different priorities are used, consider adding
whitespace around the operators with the lowest priorities.
Okay: i = i + 1
Okay: submitted += 1
Okay: x = x * 2 - 1
Okay: hypot2 = x * x + y * y
Okay: c = (a + b) * (a - b)
Okay: foo(bar, key='word', *args, **kwargs)
Okay: alpha[:-i]
E225: i=i+1
E225: submitted +=1
E225: x = x /2 - 1
E225: z = x **y
E225: z = 1and 1
E226: c = (a+b) * (a-b)
E226: hypot2 = x*x + y*y
E227: c = a|b
E228: msg = fmt%(errno, errmsg)
Whitespace before ']' Open
a[i] = (T5[(t[ i ] >> 24) & 0xFF] ^
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Missing whitespace around operator Open
result.append((Si[(t[(i+s2) % BC] >> 8) & 0xFF] ^ (tt>> 8)) &0xFF)
- Read upRead up
- Exclude checks
Surround operators with a single space on either side.
- Always surround these binary operators with a single space on
either side: assignment (=), augmented assignment (+=, -= etc.),
comparisons (==, <, >, !=, <=, >=, in, not in, is, is not),
Booleans (and, or, not).
- If operators with different priorities are used, consider adding
whitespace around the operators with the lowest priorities.
Okay: i = i + 1
Okay: submitted += 1
Okay: x = x * 2 - 1
Okay: hypot2 = x * x + y * y
Okay: c = (a + b) * (a - b)
Okay: foo(bar, key='word', *args, **kwargs)
Okay: alpha[:-i]
E225: i=i+1
E225: submitted +=1
E225: x = x /2 - 1
E225: z = x **y
E225: z = 1and 1
E226: c = (a+b) * (a-b)
E226: hypot2 = x*x + y*y
E227: c = a|b
E228: msg = fmt%(errno, errmsg)
Expected 2 blank lines, found 1 Open
def encrypt(key, block):
- Read upRead up
- Exclude checks
Separate top-level function and class definitions with two blank lines.
Method definitions inside a class are separated by a single blank
line.
Extra blank lines may be used (sparingly) to separate groups of
related functions. Blank lines may be omitted between a bunch of
related one-liners (e.g. a set of dummy implementations).
Use blank lines in functions, sparingly, to indicate logical
sections.
Okay: def a():\n pass\n\n\ndef b():\n pass
Okay: def a():\n pass\n\n\nasync def b():\n pass
Okay: def a():\n pass\n\n\n# Foo\n# Bar\n\ndef b():\n pass
Okay: default = 1\nfoo = 1
Okay: classify = 1\nfoo = 1
E301: class Foo:\n b = 0\n def bar():\n pass
E302: def a():\n pass\n\ndef b(n):\n pass
E302: def a():\n pass\n\nasync def b(n):\n pass
E303: def a():\n pass\n\n\n\ndef b(n):\n pass
E303: def a():\n\n\n\n pass
E304: @decorator\n\ndef a():\n pass
E305: def a():\n pass\na()
E306: def a():\n def b():\n pass\n def c():\n pass
Unexpected spaces around keyword / parameter equals Open
def __init__(self, key, block_size = 16):
- Read upRead up
- Exclude checks
Don't use spaces around the '=' sign in function arguments.
Don't use spaces around the '=' sign when used to indicate a
keyword argument or a default parameter value, except when
using a type annotation.
Okay: def complex(real, imag=0.0):
Okay: return magic(r=real, i=imag)
Okay: boolean(a == b)
Okay: boolean(a != b)
Okay: boolean(a <= b)
Okay: boolean(a >= b)
Okay: def foo(arg: int = 42):
Okay: async def foo(arg: int = 42):
E251: def complex(real, imag = 0.0):
E251: return magic(r = real, i = imag)
E252: def complex(real, image: float=0.0):
Multiple spaces before operator Open
(S[(tt >> 24) & 0xFF] & 0xFF) ^ \
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Whitespace after '[' Open
result.append((S[ t[(i+s3) % BC] & 0xFF] ^ tt ) & 0xFF)
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Whitespace before ')' Open
result.append((S[ t[(i+s3) % BC] & 0xFF] ^ tt ) & 0xFF)
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Whitespace before ']' Open
result.append((Si[(t[ i ] >> 24) & 0xFF] ^ (tt>>24)) &0xFF)
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Missing whitespace around operator Open
result.append((Si[(t[(i+s1) % BC] >> 16) & 0xFF] ^ (tt>>16)) &0xFF)
- Read upRead up
- Exclude checks
Surround operators with a single space on either side.
- Always surround these binary operators with a single space on
either side: assignment (=), augmented assignment (+=, -= etc.),
comparisons (==, <, >, !=, <=, >=, in, not in, is, is not),
Booleans (and, or, not).
- If operators with different priorities are used, consider adding
whitespace around the operators with the lowest priorities.
Okay: i = i + 1
Okay: submitted += 1
Okay: x = x * 2 - 1
Okay: hypot2 = x * x + y * y
Okay: c = (a + b) * (a - b)
Okay: foo(bar, key='word', *args, **kwargs)
Okay: alpha[:-i]
E225: i=i+1
E225: submitted +=1
E225: x = x /2 - 1
E225: z = x **y
E225: z = 1and 1
E226: c = (a+b) * (a-b)
E226: hypot2 = x*x + y*y
E227: c = a|b
E228: msg = fmt%(errno, errmsg)
Unexpected spaces around keyword / parameter equals Open
def __init__(self, key, block_size = 16):
- Read upRead up
- Exclude checks
Don't use spaces around the '=' sign in function arguments.
Don't use spaces around the '=' sign when used to indicate a
keyword argument or a default parameter value, except when
using a type annotation.
Okay: def complex(real, imag=0.0):
Okay: return magic(r=real, i=imag)
Okay: boolean(a == b)
Okay: boolean(a != b)
Okay: boolean(a <= b)
Okay: boolean(a >= b)
Okay: def foo(arg: int = 42):
Okay: async def foo(arg: int = 42):
E251: def complex(real, imag = 0.0):
E251: return magic(r = real, i = imag)
E252: def complex(real, image: float=0.0):
Multiple spaces after operator Open
ciphertext[i * 4 + 2] << 8 |
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Multiple spaces before operator Open
(rcon[rconpointer] & 0xFF) << 24
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Multiple spaces after operator Open
(S[(tt >> 8) & 0xFF] & 0xFF) << 8 ^ \
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Multiple spaces before operator Open
T4[ t[(i + s3) % BC] & 0xFF] ) ^ Ke[r][i]
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Whitespace after '[' Open
result.append((Si[(t[ i ] >> 24) & 0xFF] ^ (tt>>24)) &0xFF)
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Multiple spaces before operator Open
result.append((Si[ t[(i+s3) % BC] & 0xFF] ^ tt ) &0xFF)
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Multiple spaces before operator Open
(S[ tt & 0xFF] & 0xFF) << 8 ^ \
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Continuation line under-indented for visual indent Open
(key[i * 4 + 2] << 8) | key[i * 4 + 3])
- Read upRead up
- Exclude checks
Continuation lines indentation.
Continuation lines should align wrapped elements either vertically
using Python's implicit line joining inside parentheses, brackets
and braces, or using a hanging indent.
When using a hanging indent these considerations should be applied:
- there should be no arguments on the first line, and
- further indentation should be used to clearly distinguish itself
as a continuation line.
Okay: a = (\n)
E123: a = (\n )
Okay: a = (\n 42)
E121: a = (\n 42)
E122: a = (\n42)
E123: a = (\n 42\n )
E124: a = (24,\n 42\n)
E125: if (\n b):\n pass
E126: a = (\n 42)
E127: a = (24,\n 42)
E128: a = (24,\n 42)
E129: if (a or\n b):\n pass
E131: a = (\n 42\n 24)
Multiple spaces after operator Open
(S[(tt >> 8) & 0xFF] & 0xFF) << 16 ^ \
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Multiple spaces after operator Open
(S[(tt >> 8) & 0xFF] & 0xFF) << 8 ^ \
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Whitespace after '[' Open
a[i] = (T1[(t[ i ] >> 24) & 0xFF] ^
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Missing whitespace around operator Open
result.append((S[(t[(i+s2) % BC] >> 8) & 0xFF] ^ (tt>> 8)) & 0xFF)
- Read upRead up
- Exclude checks
Surround operators with a single space on either side.
- Always surround these binary operators with a single space on
either side: assignment (=), augmented assignment (+=, -= etc.),
comparisons (==, <, >, !=, <=, >=, in, not in, is, is not),
Booleans (and, or, not).
- If operators with different priorities are used, consider adding
whitespace around the operators with the lowest priorities.
Okay: i = i + 1
Okay: submitted += 1
Okay: x = x * 2 - 1
Okay: hypot2 = x * x + y * y
Okay: c = (a + b) * (a - b)
Okay: foo(bar, key='word', *args, **kwargs)
Okay: alpha[:-i]
E225: i=i+1
E225: submitted +=1
E225: x = x /2 - 1
E225: z = x **y
E225: z = 1and 1
E226: c = (a+b) * (a-b)
E226: hypot2 = x*x + y*y
E227: c = a|b
E228: msg = fmt%(errno, errmsg)
Multiple spaces after operator Open
T7[(t[(i + s2) % BC] >> 8) & 0xFF] ^
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Whitespace before ')' Open
result.append((Si[ t[(i+s3) % BC] & 0xFF] ^ tt ) &0xFF)
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Multiple spaces after operator Open
(S[ tt & 0xFF] & 0xFF) << 8 ^ \
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Whitespace after '[' Open
result.append((S[(t[ i ] >> 24) & 0xFF] ^ (tt>>24)) & 0xFF)
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Whitespace before ')' Open
plaintext[i * 4 + 3] ) ^ Ke[0][i])
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Whitespace before ']' Open
t[i] = (ciphertext[i * 4 ] << 24 |
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Missing whitespace around operator Open
result.append((Si[(t[(i+s2) % BC] >> 8) & 0xFF] ^ (tt>> 8)) &0xFF)
- Read upRead up
- Exclude checks
Surround operators with a single space on either side.
- Always surround these binary operators with a single space on
either side: assignment (=), augmented assignment (+=, -= etc.),
comparisons (==, <, >, !=, <=, >=, in, not in, is, is not),
Booleans (and, or, not).
- If operators with different priorities are used, consider adding
whitespace around the operators with the lowest priorities.
Okay: i = i + 1
Okay: submitted += 1
Okay: x = x * 2 - 1
Okay: hypot2 = x * x + y * y
Okay: c = (a + b) * (a - b)
Okay: foo(bar, key='word', *args, **kwargs)
Okay: alpha[:-i]
E225: i=i+1
E225: submitted +=1
E225: x = x /2 - 1
E225: z = x **y
E225: z = 1and 1
E226: c = (a+b) * (a-b)
E226: hypot2 = x*x + y*y
E227: c = a|b
E228: msg = fmt%(errno, errmsg)
Expected 2 blank lines, found 1 Open
def test():
- Read upRead up
- Exclude checks
Separate top-level function and class definitions with two blank lines.
Method definitions inside a class are separated by a single blank
line.
Extra blank lines may be used (sparingly) to separate groups of
related functions. Blank lines may be omitted between a bunch of
related one-liners (e.g. a set of dummy implementations).
Use blank lines in functions, sparingly, to indicate logical
sections.
Okay: def a():\n pass\n\n\ndef b():\n pass
Okay: def a():\n pass\n\n\nasync def b():\n pass
Okay: def a():\n pass\n\n\n# Foo\n# Bar\n\ndef b():\n pass
Okay: default = 1\nfoo = 1
Okay: classify = 1\nfoo = 1
E301: class Foo:\n b = 0\n def bar():\n pass
E302: def a():\n pass\n\ndef b(n):\n pass
E302: def a():\n pass\n\nasync def b(n):\n pass
E303: def a():\n pass\n\n\n\ndef b(n):\n pass
E303: def a():\n\n\n\n pass
E304: @decorator\n\ndef a():\n pass
E305: def a():\n pass\na()
E306: def a():\n def b():\n pass\n def c():\n pass
Blank line at end of file Open
- Read upRead up
- Exclude checks
Trailing blank lines are superfluous.
Okay: spam(1)
W391: spam(1)\n
However the last line should end with a new line (warning W292).
Continuation line over-indented for visual indent Open
U3[(tt >> 8) & 0xFF] ^ \
- Read upRead up
- Exclude checks
Continuation lines indentation.
Continuation lines should align wrapped elements either vertically
using Python's implicit line joining inside parentheses, brackets
and braces, or using a hanging indent.
When using a hanging indent these considerations should be applied:
- there should be no arguments on the first line, and
- further indentation should be used to clearly distinguish itself
as a continuation line.
Okay: a = (\n)
E123: a = (\n )
Okay: a = (\n 42)
E121: a = (\n 42)
E122: a = (\n42)
E123: a = (\n 42\n )
E124: a = (24,\n 42\n)
E125: if (\n b):\n pass
E126: a = (\n 42)
E127: a = (24,\n 42)
E128: a = (24,\n 42)
E129: if (a or\n b):\n pass
E131: a = (\n 42\n 24)
Continuation line over-indented for visual indent Open
U4[ tt & 0xFF]
- Read upRead up
- Exclude checks
Continuation lines indentation.
Continuation lines should align wrapped elements either vertically
using Python's implicit line joining inside parentheses, brackets
and braces, or using a hanging indent.
When using a hanging indent these considerations should be applied:
- there should be no arguments on the first line, and
- further indentation should be used to clearly distinguish itself
as a continuation line.
Okay: a = (\n)
E123: a = (\n )
Okay: a = (\n 42)
E121: a = (\n 42)
E122: a = (\n42)
E123: a = (\n 42\n )
E124: a = (24,\n 42\n)
E125: if (\n b):\n pass
E126: a = (\n 42)
E127: a = (24,\n 42)
E128: a = (24,\n 42)
E129: if (a or\n b):\n pass
E131: a = (\n 42\n 24)
Whitespace after '[' Open
(S[ tt & 0xFF] & 0xFF) << 8 ^ \
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Whitespace before ']' Open
result.append((S[(t[ i ] >> 24) & 0xFF] ^ (tt>>24)) & 0xFF)
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Multiple spaces before operator Open
result.append((S[ t[(i+s3) % BC] & 0xFF] ^ tt ) & 0xFF)
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Whitespace before ')' Open
T8[ t[(i + s3) % BC] & 0xFF] ) ^ Kd[r][i]
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Expected 2 blank lines, found 1 Open
@deprecated_class_name('rijndael')
- Read upRead up
- Exclude checks
Separate top-level function and class definitions with two blank lines.
Method definitions inside a class are separated by a single blank
line.
Extra blank lines may be used (sparingly) to separate groups of
related functions. Blank lines may be omitted between a bunch of
related one-liners (e.g. a set of dummy implementations).
Use blank lines in functions, sparingly, to indicate logical
sections.
Okay: def a():\n pass\n\n\ndef b():\n pass
Okay: def a():\n pass\n\n\nasync def b():\n pass
Okay: def a():\n pass\n\n\n# Foo\n# Bar\n\ndef b():\n pass
Okay: default = 1\nfoo = 1
Okay: classify = 1\nfoo = 1
E301: class Foo:\n b = 0\n def bar():\n pass
E302: def a():\n pass\n\ndef b(n):\n pass
E302: def a():\n pass\n\nasync def b(n):\n pass
E303: def a():\n pass\n\n\n\ndef b(n):\n pass
E303: def a():\n\n\n\n pass
E304: @decorator\n\ndef a():\n pass
E305: def a():\n pass\na()
E306: def a():\n def b():\n pass\n def c():\n pass
Whitespace before ']' Open
t.append((plaintext[i * 4 ] << 24 |
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Multiple spaces after operator Open
result.append((S[(t[(i+s2) % BC] >> 8) & 0xFF] ^ (tt>> 8)) & 0xFF)
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Whitespace after '[' Open
a[i] = (T5[(t[ i ] >> 24) & 0xFF] ^
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Missing whitespace around bitwise or shift operator Open
result.append((Si[(t[ i ] >> 24) & 0xFF] ^ (tt>>24)) &0xFF)
- Read upRead up
- Exclude checks
Surround operators with a single space on either side.
- Always surround these binary operators with a single space on
either side: assignment (=), augmented assignment (+=, -= etc.),
comparisons (==, <, >, !=, <=, >=, in, not in, is, is not),
Booleans (and, or, not).
- If operators with different priorities are used, consider adding
whitespace around the operators with the lowest priorities.
Okay: i = i + 1
Okay: submitted += 1
Okay: x = x * 2 - 1
Okay: hypot2 = x * x + y * y
Okay: c = (a + b) * (a - b)
Okay: foo(bar, key='word', *args, **kwargs)
Okay: alpha[:-i]
E225: i=i+1
E225: submitted +=1
E225: x = x /2 - 1
E225: z = x **y
E225: z = 1and 1
E226: c = (a+b) * (a-b)
E226: hypot2 = x*x + y*y
E227: c = a|b
E228: msg = fmt%(errno, errmsg)
Missing whitespace around operator Open
result.append((Si[(t[ i ] >> 24) & 0xFF] ^ (tt>>24)) &0xFF)
- Read upRead up
- Exclude checks
Surround operators with a single space on either side.
- Always surround these binary operators with a single space on
either side: assignment (=), augmented assignment (+=, -= etc.),
comparisons (==, <, >, !=, <=, >=, in, not in, is, is not),
Booleans (and, or, not).
- If operators with different priorities are used, consider adding
whitespace around the operators with the lowest priorities.
Okay: i = i + 1
Okay: submitted += 1
Okay: x = x * 2 - 1
Okay: hypot2 = x * x + y * y
Okay: c = (a + b) * (a - b)
Okay: foo(bar, key='word', *args, **kwargs)
Okay: alpha[:-i]
E225: i=i+1
E225: submitted +=1
E225: x = x /2 - 1
E225: z = x **y
E225: z = 1and 1
E226: c = (a+b) * (a-b)
E226: hypot2 = x*x + y*y
E227: c = a|b
E228: msg = fmt%(errno, errmsg)
Multiple spaces after operator Open
result.append((Si[(t[(i+s2) % BC] >> 8) & 0xFF] ^ (tt>> 8)) &0xFF)
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5
Whitespace after '[' Open
tk[KC // 2] ^= (S[ tt & 0xFF] & 0xFF) ^ \
- Read upRead up
- Exclude checks
Avoid extraneous whitespace.
Avoid extraneous whitespace in these situations:
- Immediately inside parentheses, brackets or braces.
- Immediately before a comma, semicolon, or colon.
Okay: spam(ham[1], {eggs: 2})
E201: spam( ham[1], {eggs: 2})
E201: spam(ham[ 1], {eggs: 2})
E201: spam(ham[1], { eggs: 2})
E202: spam(ham[1], {eggs: 2} )
E202: spam(ham[1 ], {eggs: 2})
E202: spam(ham[1], {eggs: 2 })
E203: if x == 4: print x, y; x, y = y , x
E203: if x == 4: print x, y ; x, y = y, x
E203: if x == 4 : print x, y; x, y = y, x
Multiple spaces before operator Open
T8[ t[(i + s3) % BC] & 0xFF] ) ^ Kd[r][i]
- Read upRead up
- Exclude checks
Avoid extraneous whitespace around an operator.
Okay: a = 12 + 3
E221: a = 4 + 5
E222: a = 4 + 5
E223: a = 4\t+ 5
E224: a = 4 +\t5