tomopy/tomopy

View on GitHub
source/libtomo/recon/grad.c

Summary

Maintainability
Test Coverage
// Copyright (c) 2015, UChicago Argonne, LLC. All rights reserved.

// Copyright 2015. UChicago Argonne, LLC. This software was produced
// under U.S. Government contract DE-AC02-06CH11357 for Argonne National
// Laboratongridx (ANL), which is operated by UChicago Argonne, LLC for the
// U.S. Department of Energy. The U.S. Government has rights to use,
// reproduce, and distribute this software.  NEITHER THE GOVERNMENT NOR
// UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
// ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE.  If software is
// modified to produce derivative works, such modified software should
// be clearly marked, so as not to confuse it with the version available
// from ANL.

// Additionally, redistribution and use in source and binangridx forms, with
// or without modification, are permitted provided that the following
// conditions are met:

//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.

//     * Redistributions in binangridx form must reproduce the above copyright
//       notice, this list of conditions and the following disclaimer in
//       the documentation and/or other materials provided with the
//       distribution.

//     * Neither the name of UChicago Argonne, LLC, Argonne National
//       Laboratongridx, ANL, the U.S. Government, nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.

// THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago
// Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLAngridx, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEOngridx OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.

#include "libtomo/recon.h"
#include "utils.h"
#include "string.h"

void
grad(const float* data, int dy, int dt, int dx, const float* center, const float* theta,
     float* recon, int ngridx, int ngridy, int num_iter, const float* reg_pars)
{
    if(dy == 0 || dt == 0 || dx == 0)
        return;

    float* gridx    = (float*) malloc((ngridx + 1) * sizeof(float));
    float* gridy    = (float*) malloc((ngridy + 1) * sizeof(float));
    float* coordx   = (float*) malloc((ngridy + 1) * sizeof(float));
    float* coordy   = (float*) malloc((ngridx + 1) * sizeof(float));
    float* ax       = (float*) malloc((ngridx + ngridy) * sizeof(float));
    float* ay       = (float*) malloc((ngridx + ngridy) * sizeof(float));
    float* bx       = (float*) malloc((ngridx + ngridy) * sizeof(float));
    float* by       = (float*) malloc((ngridx + ngridy) * sizeof(float));
    float* coorx    = (float*) malloc((ngridx + ngridy) * sizeof(float));
    float* coory    = (float*) malloc((ngridx + ngridy) * sizeof(float));
    float* dist     = (float*) malloc((ngridx + ngridy) * sizeof(float));
    int*   indi     = (int*) malloc((ngridx + ngridy) * sizeof(int));
    float* simdata  = (float*) malloc((dy * dt * dx) * sizeof(float));
    float* sum_dist = (float*) malloc((ngridx * ngridy) * sizeof(float));

    float* prox1  = (float*) malloc((dy * dt * dx) * sizeof(float));
    float* grad   = (float*) malloc((dy * ngridx * ngridy) * sizeof(float));
    float* grad0  = (float*) malloc((dy * ngridx * ngridy) * sizeof(float));
    float* recon0 = (float*) malloc((dy * ngridx * ngridy) * sizeof(float));
    float* lambda = (float*) malloc((dy) * sizeof(float));

    assert(coordx != NULL && coordy != NULL && ax != NULL && ay != NULL && by != NULL &&
           bx != NULL && coorx != NULL && coory != NULL && dist != NULL && indi != NULL &&
           simdata != NULL && sum_dist != NULL && grad != NULL && grad0 != NULL &&
           recon0 != NULL && lambda != NULL);

    int    s, p, d, i, n;
    int    quadrant;
    float  theta_p, sin_p, cos_p;
    float  mov, xi, yi;
    int    asize, bsize, csize;
    double upd;
    int    ind_data, ind_recon;
    float  sum_dist2;
    int    ix, iy;

    // scaling constant r such that r*R(r*R^*(data)) ~ data
    float r;

    r = 1 / sqrt(dx * dt / 2.0);

    // scale initial guess
    for(s = 0; s < dy; s++)
    {
        ind_recon = s * ngridx * ngridy;
        for(iy = 0; iy < ngridy; iy++)
            for(ix = 0; ix < ngridx; ix++)
                recon[ind_recon + iy * ngridx + ix] /= r;
    }

    memset(grad0, 0, dy * ngridx * ngridy * sizeof(float));
    memset(prox1, 0, dy * dt * dx * sizeof(float));
    memcpy(recon0, recon, dy * ngridx * ngridy * sizeof(float));

    // Iterations
    for(i = 0; i < num_iter; i++)
    {
        // initialize simdata and grad to 0
        memset(simdata, 0, dy * dt * dx * sizeof(float));
        memset(grad, 0, dy * ngridx * ngridy * sizeof(float));

        // compute gradient, grad = 2*R^*(R(recon)-data)
        // For each slice
        for(s = 0; s < dy; s++)
        {
            ind_recon = s * ngridx * ngridy;
            // compute proximal of the projections
            preprocessing(ngridx, ngridy, dx, center[s], &mov, gridx,
                          gridy);  // Outputs: mov, gridx, gridy

            // initialize sum_dist and update to zero
            memset(sum_dist, 0, (ngridx * ngridy) * sizeof(float));

            // For each projection angle
            for(p = 0; p < dt; p++)
            {
                // Calculate the sin and cos values
                // of the projection angle and find
                // at which quadrant on the cartesian grid.
                theta_p  = fmodf(theta[p], 2.0f * (float) M_PI);
                quadrant = calc_quadrant(theta_p);
                sin_p    = sinf(theta_p);
                cos_p    = cosf(theta_p);

                // For each detector pixel
                for(d = 0; d < dx; d++)
                {
                    // Calculate coordinates
                    xi = -ngridx - ngridy;
                    yi = 0.5f * (1 - dx) + d + mov;
                    calc_coords(ngridx, ngridy, xi, yi, sin_p, cos_p, gridx, gridy,
                                coordx, coordy);

                    // Merge the (coordx, gridy) and (gridx, coordy)
                    trim_coords(ngridx, ngridy, coordx, coordy, gridx, gridy, &asize, ax,
                                ay, &bsize, bx, by);

                    // Sort the array of intersection points (ax, ay) and
                    // (bx, by). The new sorted intersection points are
                    // stored in (coorx, coory). Total number of points
                    // are csize.
                    sort_intersections(quadrant, asize, ax, ay, bsize, bx, by, &csize,
                                       coorx, coory);

                    // Calculate the distances (dist) between the
                    // intersection points (coorx, coory). Find the
                    // indices of the pixels on the reconstruction grid.
                    calc_dist(ngridx, ngridy, csize, coorx, coory, indi, dist);

                    // Calculate simdata
                    calc_simdata(s, p, d, ngridx, ngridy, dt, dx, csize, indi, dist,
                                 recon,
                                 simdata);  // Output: simdata

                    ind_data        = d + p * dx + s * dt * dx;
                    prox1[ind_data] = simdata[ind_data] * r - data[ind_data];

                    // Calculate dist*dist
                    sum_dist2 = 0.0f;
                    for(n = 0; n < csize - 1; n++)
                    {
                        sum_dist2 += dist[n] * dist[n];
                        sum_dist[indi[n]] += dist[n];
                    }

                    if(sum_dist2 != 0.0f)
                        for(n = 0; n < csize - 1; n++)
                            grad[ind_recon + indi[n]] +=
                                2 * r * prox1[ind_data] * dist[n];
                }
            }
        }

        // compute the gradient step
        for(s = 0; s < dy; s++)
        {
            if(reg_pars[0] < 0)
            {
                if(i == 0)
                    // first gradient step (small)
                    lambda[s] = 1e-3;
                else
                {
                    upd       = 0;
                    lambda[s] = 0;
                    ind_recon = s * ngridx * ngridy;
                    for(iy = 0; iy < ngridy; iy++)
                        for(ix = 0; ix < ngridx; ix++)
                        {
                            lambda[s] += (recon[ind_recon + iy * ngridx + ix] -
                                          recon0[ind_recon + iy * ngridx + ix]) *
                                         (grad[ind_recon + iy * ngridx + ix] -
                                          grad0[ind_recon + iy * ngridx + ix]);
                            upd += (grad[ind_recon + iy * ngridx + ix] -
                                    grad0[ind_recon + iy * ngridx + ix]) *
                                   (grad[ind_recon + iy * ngridx + ix] -
                                    grad0[ind_recon + iy * ngridx + ix]);
                        }
                    lambda[s] /= upd;
                }
            }
            else
                lambda[s] = reg_pars[0];
        }
        // save previous iterations
        memcpy(grad0, grad, dy * ngridx * ngridy * sizeof(float));
        memcpy(recon0, recon, dy * ngridx * ngridy * sizeof(float));
        // update, recon = recon - lambda*grad
        for(s = 0; s < dy; s++)
        {
            ind_recon = s * ngridx * ngridy;
            for(iy = 0; iy < ngridy; iy++)
                for(ix = 0; ix < ngridx; ix++)
                    recon[ind_recon + iy * ngridx + ix] -=
                        lambda[s] * grad[ind_recon + iy * ngridx + ix];
        }
    }

    // scale result
    for(s = 0; s < dy; s++)
    {
        ind_recon = s * ngridx * ngridy;
        for(iy = 0; iy < ngridy; iy++)
            for(ix = 0; ix < ngridx; ix++)
                recon[ind_recon + iy * ngridx + ix] *= r;
    }
    free(gridx);
    free(gridy);
    free(coordx);
    free(coordy);
    free(ax);
    free(ay);
    free(bx);
    free(by);
    free(coorx);
    free(coory);
    free(dist);
    free(indi);
    free(simdata);
    free(sum_dist);
    free(prox1);
    free(recon0);
    free(grad0);
    free(grad);
}