bionc/utils/ode_solver.py
from typing import Callable
import numpy as np
from ..bionc_numpy import NaturalCoordinates, NaturalVelocities, BiomechanicalModel
def RK4(
t: np.ndarray,
f: Callable,
y0: np.ndarray,
normalize_idx: tuple[tuple[int, ...]] = None,
args=(),
) -> np.ndarray:
"""
Runge-Kutta 4th order method
Parameters
----------
t : array_like
time steps
f : Callable
function to be integrated in the form f(t, y, *args)
y0 : np.ndarray
initial conditions of states
normalize_idx : tuple(tuple)
indices of states to be normalized together
args : tuple
additional arguments to be passed to the function f
Returns
-------
y : array_like
states for each time step
"""
n = len(t)
y = np.zeros((len(y0), n))
y[:, 0] = y0
for i in range(n - 1):
h = t[i + 1] - t[i]
yi = np.squeeze(y[:, i])
k1 = f(t[i], yi, *args)
k2 = f(t[i] + h / 2.0, yi + k1 * h / 2.0, *args)
k3 = f(t[i] + h / 2.0, yi + k2 * h / 2.0, *args)
k4 = f(t[i] + h, yi + k3 * h, *args)
y[:, i + 1] = yi + (h / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4)
# verify after each time step the normalization of the states
if normalize_idx is not None:
for idx in normalize_idx:
y[idx, i + 1] = y[idx, i + 1] / np.linalg.norm(y[idx, i + 1])
return y
def forward_integration(
model: BiomechanicalModel,
Q_init: NaturalCoordinates,
Qdot_init: NaturalVelocities,
t_final: float = 2,
steps_per_second: int = 50,
):
"""
This function simulates the dynamics of a natural segment falling from 0m during 2s
Parameters
----------
model : BiomechanicalModel
The model to be simulated
Q_init : SegmentNaturalCoordinates
The initial natural coordinates of the segment
Qdot_init : SegmentNaturalVelocities
The initial natural velocities of the segment
t_final : float, optional
The final time of the simulation, by default 2
steps_per_second : int, optional
The number of steps per second, by default 50
Returns
-------
tuple:
time_steps : np.ndarray
The time steps of the simulation
all_states : np.ndarray
The states of the system at each time step X = [Q, Qdot]
dynamics : Callable
The dynamics of the system, f(t, X) = [Xdot, lambdas]
"""
print("Evaluate Rigid Body Constraints:")
print(model.rigid_body_constraints(Q_init))
print("Evaluate Rigid Body Constraints Jacobian Derivative:")
print(model.rigid_body_constraint_jacobian_derivative(Qdot_init))
if (model.rigid_body_constraints(Q_init) > 1e-4).any():
print(model.rigid_body_constraints(Q_init))
raise ValueError(
"The segment natural coordinates don't satisfy the rigid body constraint, at initial conditions."
)
t_final = t_final # [s]
steps_per_second = steps_per_second
time_steps = np.linspace(0, t_final, int(steps_per_second * t_final + 1))
# initial conditions, x0 = [Qi, Qidot]
states_0 = np.concatenate((Q_init.to_array(), Qdot_init.to_array()), axis=0)
# Create the forward dynamics function Callable (f(t, x) -> xdot)
def dynamics(t, states):
idx_coordinates = slice(0, model.nb_Q)
idx_velocities = slice(model.nb_Q, model.nb_Q + model.nb_Qdot)
qddot, lambdas = model.forward_dynamics(
NaturalCoordinates(states[idx_coordinates]),
NaturalVelocities(states[idx_velocities]),
# stabilization=dict(alpha=0.5, beta=0.5),
)
return np.concatenate((states[idx_velocities], qddot.to_array()), axis=0), lambdas
# Solve the Initial Value Problem (IVP) for each time step
normalize_idx = model.normalized_coordinates
all_states = RK4(t=time_steps, f=lambda t, states: dynamics(t, states)[0], y0=states_0, normalize_idx=normalize_idx)
return time_steps, all_states, dynamics