Showing 1,311 of 1,311 total issues
Cyclomatic complexity for purge_in_batches is too high. [12/11] Open
def purge_in_batches(conditions, window, total = 0, total_limit = nil)
query = conditions.select(:id).limit(window)
current_window = window
loop do
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for parse_contents is too high. [12/11] Open
def self.parse_contents(contents)
items = []
current_item = nil
contents.each_line do |line|
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for scan_complete_callback is too high. [12/11] Open
def scan_complete_callback(miq_task_id, status, _message, result)
_log.info("Storage ID: [#{id}], MiqTask ID: [#{miq_task_id}], Status: [#{status}]")
miq_task = MiqTask.find_by(:id => miq_task_id)
if miq_task.nil?
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for resource_constraints is too high. [12/11] Open
def resource_constraints
return {} unless Settings.server.worker_monitor.enforce_resource_constraints
mem_limit = self.class.worker_settings[:memory_threshold]
cpu_limit = self.class.worker_settings[:cpu_threshold_percent]
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for dialog_name_from_automate is too high. [12/11] Open
def dialog_name_from_automate(message = 'get_dialog_name', input_fields = [:request_type], extra_attrs = {})
return nil if self.class.automate_dialog_request.nil?
_log.info("Querying Automate Profile for dialog name")
attrs = {'request' => self.class.automate_dialog_request, 'message' => message}
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for next_interval_time is too high. [12/11] Open
def next_interval_time
unless valid? || errors[:run_at].blank?
_log.warn("Invalid schedule [#{id}] [#{name}]: #{Array.wrap(errors[:run_at]).join(", ")}")
return nil
end
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for add_elements is too high. [12/11] Open
def add_elements(xml_node)
return if xml_node.nil?
_log.info("Adding XML elements for [#{id}] from [#{xml_node.root.name}]")
updated = false
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for get_assigned_tos is too high. [12/11] Open
def get_assigned_tos
# Returns: {:objects => [obj, obj, ...], :tags => [[Classification.entry_object, klass], ...]}
result = {:objects => [], :tags => [], :labels => []}
tags = tag_list(:ns => namespace).split
tags.each do |t|
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for scan_via_miq_vm is too high. [12/11] Open
def scan_via_miq_vm(miqVm, ost)
# Initialize stat collection variables
ost.scanTime = Time.now.utc unless ost.scanTime
status = "OK"
status_code = 0
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for scope_for_user_role_group is too high. [12/11] Open
def scope_for_user_role_group(klass, scope, miq_group, user, managed_filters)
user_or_group = miq_group || user
if user_or_group&.self_service? && klass != MiqUserRole
scope.where(:id => klass == User ? user.id : miq_group.id)
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for xml_to_hashes is too high. [12/11] Open
def self.xml_to_hashes(xmlNode, findPath, typeName = nil)
el = XmlFind.findElement(findPath, xmlNode.root)
return nil unless MiqXml.isXmlElement?(el)
result = []
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for recursive_delete is too high. [12/11] Open
def recursive_delete(scope, klass = scope.klass, name: klass.name)
_log.debug { "=> deep_delete #{name} begin" }
# TODO: fetch distinct.pluck(:type).map(&:constantize).map { |k| refs_callbacks(k)} - to handle STI?
# current code does not require this but may be more future proof
refs, callbacks = refs_callbacks(scope.klass)
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for get_user_object is too high. [12/11] Open
def get_user_object(username, user_type = nil)
user_type ||= @user_type.split("-").first
if dn?(username)
user_type = "dn"
elsif user_type != "mail" && upn?(username)
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Cyclomatic complexity for get_user_info is too high. [12/11] Open
def get_user_info(username, user_type = nil)
user = get_user_object(username, user_type)
return nil if user.nil?
udata = {}
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one. Blocks that are calls to builtin iteration methods (e.g. `ary.map{...}) also add one, others are ignored.
def each_child_node(*types) # count begins: 1
unless block_given? # unless: +1
return to_enum(__method__, *types)
children.each do |child| # each{}: +1
next unless child.is_a?(Node) # unless: +1
yield child if types.empty? || # if: +1, ||: +1
types.include?(child.type)
end
self
end # total: 6
Method resolve
has a Cognitive Complexity of 20 (exceeds 11 allowed). Consider refactoring. Open
def self.resolve(rec, list = nil, event = nil)
# list is expected to be a list of policies, not profiles.
policies = list.nil? ? all : where(:name => list)
policies.collect do |p|
next if event && !p.events.include?(event)
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method just_perf_capture
has a Cognitive Complexity of 20 (exceeds 11 allowed). Consider refactoring. Open
def just_perf_capture(interval_name, start_time, end_time, metrics_capture)
log_header = "[#{interval_name}]"
log_time = ''
log_time << ", start_time: [#{start_time}]" unless start_time.nil?
log_time << ", end_time: [#{end_time}]" unless end_time.nil?
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method clean_dequeued_messages
has a Cognitive Complexity of 20 (exceeds 11 allowed). Consider refactoring. Open
def clean_dequeued_messages
_log.info("Cleaning up dequeued messages...")
MiqQueue.where(:state => MiqQueue::STATE_DEQUEUE).each do |message|
if message.handler.nil?
_log.warn("Cleaning message in dequeue state without worker: #{MiqQueue.format_full_log_msg(message)}")
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method dialog_name_from_automate
has a Cognitive Complexity of 20 (exceeds 11 allowed). Consider refactoring. Open
def dialog_name_from_automate(message = 'get_dialog_name', input_fields = [:request_type], extra_attrs = {})
return nil if self.class.automate_dialog_request.nil?
_log.info("Querying Automate Profile for dialog name")
attrs = {'request' => self.class.automate_dialog_request, 'message' => message}
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method build_numeric_chart_grouped_2dim
has a Cognitive Complexity of 20 (exceeds 11 allowed). Consider refactoring. Open
def build_numeric_chart_grouped_2dim
(sort1, sort2) = mri.sortby
(keep, show_other) = keep_and_show_other
show_other &&= (aggreg == :total) # FIXME: we only support :total
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method sql_supports_atom?
has a Cognitive Complexity of 20 (exceeds 11 allowed). Consider refactoring. Open
def sql_supports_atom?(exp)
operator = exp.keys.first
case operator.downcase
when "contains"
if exp[operator].key?("tag")
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"