Showing 1,311 of 1,311 total issues
Method sync_from_file
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def self.sync_from_file(filename)
attrs = YAML.load_file(filename)
lookup_attributes = {}
lookup_attributes[:name] = attrs["name"]
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method resolve_policy_conditions
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def self.resolve_policy_conditions(policy, rec)
policy_result = 'allow'
conditions =
policy.conditions.collect do |c|
rec_model = rec.class.base_model.name
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method filter_ns
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def self.filter_ns(tags, ns)
if ns.nil?
tags = tags.to_a if tags.kind_of?(ActiveRecord::Relation)
tags = tags.compact if tags.respond_to?(:compact)
return tags
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method default_rate_details_for
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def self.default_rate_details_for(rate_type)
rate_details = []
fixture_file = File.join(FIXTURE_DIR, "chargeback_rates.yml")
fixture = File.exist?(fixture_file) ? YAML.load_file(fixture_file) : []
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method build_conditions_and_selects
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def build_conditions_and_selects(options)
cond = [""]
sel = "message"
if options[:time_threshold]
sel_conj = sel.empty? ? "" : ", "
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method add_joins
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def add_joins(klass, scope, includes)
return scope unless includes
includes = Array(includes) unless includes.kind_of?(Enumerable)
includes.each do |association, value|
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method smartstate_analysis
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def smartstate_analysis(miq_task_id = nil)
method_name = "smartstate_analysis"
unless miq_task_id.nil?
miq_task = MiqTask.find_by(:id => miq_task_id)
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method get_performance_metric
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def get_performance_metric(capture_interval, metric, range, function = nil)
# => capture_interval = 'realtime' | 'hourly' | 'daily'
# => metric = perf column name (real or virtual)
# => function = :avg | :min | :max
# => range = [start_time, end_time] | start_time | number in seconds to go back
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method lookup_user_group
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def lookup_user_group(user, userid, miq_group, miq_group_id)
user ||= (userid && User.lookup_by_userid(userid)) || User.current_user
miq_group_id ||= miq_group&.id
return [user, user.current_group] if user && user.current_group_id.to_s == miq_group_id.to_s
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method seed
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def self.seed
searches = where("name like 'default%'").index_by { |ms| "#{ms.name}-#{ms.db}" }
fixture_file = File.join(FIXTURE_DIR, "miq_searches.yml")
slist = YAML.load_file(fixture_file) if File.exist?(fixture_file)
slist ||= []
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method to_ruby
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def to_ruby(timezone = nil, prune_sql: false)
timezone ||= "UTC".freeze
cached_args = prune_sql ? "#{timezone}P" : timezone
# clear out the cache if the args changed
if @chached_args != cached_args
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method quote
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def self.quote(val, typ)
if Field.is_field?(val)
target = Target.parse(val)
value = target.tag_path_with
col_type = target.column_type || :string
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method hourly_perf_model_details
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def self.hourly_perf_model_details(dbs)
dbs.each_with_object({}) do |db, h|
perf_model = "#{db}Performance"
h[db] = MiqExpression.model_details(perf_model, :include_model => false, :interval => "hourly").each_with_object({}) do |a, hh|
d, c = a
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method seed_default_events
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def self.seed_default_events(event_defs)
event_sets = MiqEventDefinitionSet.all.index_by(&:name)
fname = File.join(FIXTURE_DIR, "miq_event_definition_events.yml")
event_definitions_from_path(fname).each do |event|
set_type = event.delete('set_type')
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method allowed_customization_templates
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def allowed_customization_templates(_options = {})
result = []
customization_template_id = get_value(@values[:customization_template_id])
@values[:customization_template_script] = nil if customization_template_id.nil?
prov_typ = "vm"
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Similar blocks of code found in 2 locations. Consider refactoring. Open
cb_rates.each do |rate|
rate[:cb_rate].assign_to_objects(rate[:object]) if rate.key?(:object)
rate[:cb_rate].assign_to_tags(*rate[:tag]) if rate.key?(:tag)
rate[:cb_rate].assign_to_labels(*rate[:label]) if rate.key?(:label)
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 40.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
def deploy_server
unless ext_management_system
raise _("Server Profile %{profile} <%{name}> with Id: <%{id}> is not associated with a provider.") %
{:profile => self, :name => name, :id => id}
end
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 40.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
def unassign_server
unless ext_management_system
raise _("Server Profile %{profile} <%{name}> with Id: <%{id}> is not associated with a provider.") %
{:profile => self, :name => name, :id => id}
end
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 40.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
cb_rates.each do |rate|
rate[:cb_rate].unassign_objects(rate[:object]) if rate.key?(:object)
rate[:cb_rate].unassign_tags(*rate[:tag]) if rate.key?(:tag)
rate[:cb_rate].unassign_labels(*rate[:label]) if rate.key?(:label)
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 40.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Avoid parameter lists longer than 5 parameters. [10/5] Open
def run_role(env_vars, extra_vars, role_name, roles_path:, role_skip_facts: true, tags: nil, hosts: ["localhost"], credentials: [], verbosity: 0, become_enabled: false)
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks for methods with too many parameters.
The maximum number of parameters is configurable. Keyword arguments can optionally be excluded from the total count, as they add less complexity than positional or optional parameters.
Any number of arguments for initialize
method inside a block of
Struct.new
and Data.define
like this is always allowed:
Struct.new(:one, :two, :three, :four, :five, keyword_init: true) do
def initialize(one:, two:, three:, four:, five:)
end
end
This is because checking the number of arguments of the initialize
method
does not make sense.
NOTE: Explicit block argument &block
is not counted to prevent
erroneous change that is avoided by making block argument implicit.
Example: Max: 3
# good
def foo(a, b, c = 1)
end
Example: Max: 2
# bad
def foo(a, b, c = 1)
end
Example: CountKeywordArgs: true (default)
# counts keyword args towards the maximum
# bad (assuming Max is 3)
def foo(a, b, c, d: 1)
end
# good (assuming Max is 3)
def foo(a, b, c: 1)
end
Example: CountKeywordArgs: false
# don't count keyword args towards the maximum
# good (assuming Max is 3)
def foo(a, b, c, d: 1)
end
This cop also checks for the maximum number of optional parameters.
This can be configured using the MaxOptionalParameters
config option.
Example: MaxOptionalParameters: 3 (default)
# good
def foo(a = 1, b = 2, c = 3)
end
Example: MaxOptionalParameters: 2
# bad
def foo(a = 1, b = 2, c = 3)
end