Showing 1,311 of 1,311 total issues
Method net_http_object
has a Cognitive Complexity of 15 (exceeds 11 allowed). Consider refactoring. Open
def net_http_object(hostname, port)
p_uri = proxy_uri
if p_uri.nil?
# no proxy set
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method process_sub_xml
has a Cognitive Complexity of 15 (exceeds 11 allowed). Consider refactoring. Open
def self.process_sub_xml(xmlNode, path, options = {})
results = []
xmlNode.each_element do |e|
if e.name == 'dir'
results += process_sub_xml(e, path + '\\' + e.attributes['name'], options)
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method determine_visibility
has a Cognitive Complexity of 15 (exceeds 11 allowed). Consider refactoring. Open
def determine_visibility(platform, supports_customization_template, customize_fields_list)
field_names_to_edit = []
field_names_to_hide = []
if supports_customization_template
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Similar blocks of code found in 2 locations. Consider refactoring. Open
def self.validate_storage_queue(userid, ext_management_system, options = {})
options["password"] = ManageIQ::Password.encrypt(options["password"])
task_opts = {
:action => "validating PhysicalStorage for user #{userid}",
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 45.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Method validate_params!
has a Cognitive Complexity of 15 (exceeds 11 allowed). Consider refactoring. Open
def validate_params!(env_vars, extra_vars, tags, ansible_runner_method, playbook_or_role_args)
errors = []
errors << "env_vars must be a Hash, got: #{hash.class}" unless env_vars.kind_of?(Hash)
errors << "extra_vars must be a Hash, got: #{hash.class}" unless extra_vars.kind_of?(Hash)
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Similar blocks of code found in 2 locations. Consider refactoring. Open
begin
report.update!(attrs)
rescue ActiveRecord::RecordInvalid
duplicate = find_by(:name => name)
if duplicate&.rpt_type == "Custom"
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 45.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 4 locations. Consider refactoring. Open
COMMON_ATTRIBUTES = [
{
:component => 'text-field',
:label => N_('Username'),
:helperText => N_('Username for this credential'),
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 45.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 4 locations. Consider refactoring. Open
COMMON_ATTRIBUTES = [
{
:component => 'text-field',
:label => N_('Username'),
:helperText => N_('Username for this credential'),
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 45.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 4 locations. Consider refactoring. Open
COMMON_ATTRIBUTES = [
{
:component => 'text-field',
:label => N_('Access Key'),
:helperText => N_('AWS Access Key for this credential'),
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 45.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Method offers
has a Cognitive Complexity of 15 (exceeds 11 allowed). Consider refactoring. Open
def offers(perf, ts, options, type, target)
return nil if options.nil?
options[:mode] ||= COMPUTE_OFFERS_MODE_DEFAULT[type]
options[:metric] ||= COMPUTE_OFFERS_METRIC_DEFAULT[type]
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method set_ws_field_value_by_display_name
has a Cognitive Complexity of 15 (exceeds 11 allowed). Consider refactoring. Open
def set_ws_field_value_by_display_name(values, key, data, dialog_name, dlg_fields, obj_key = :name)
value = data.delete(key)
dlg_field = dlg_fields[key]
data_type = dlg_field[:data_type]
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method operands2rubyvalue
has a Cognitive Complexity of 15 (exceeds 11 allowed). Consider refactoring. Open
def self.operands2rubyvalue(operator, ops, context_type)
if ops["field"]
if ops["field"] == "<count>"
["<count>", quote(ops["value"], :integer)]
else
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Similar blocks of code found in 2 locations. Consider refactoring. Open
def self.create_physical_storage_queue(userid, ext_management_system, options = {})
options["password"] = ManageIQ::Password.encrypt(options["password"])
task_opts = {
:action => "creating PhysicalStorage for user #{userid}",
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 45.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Method target_name
has a Cognitive Complexity of 15 (exceeds 11 allowed). Consider refactoring. Open
def target_name
e_text = if @event.target_name # Create the title using Policy description
@event.target_name
elsif @event.miq_policy_id && MiqPolicy.exists?(@event.miq_policy_id) # or Policy name
MiqPolicy.find(@event.miq_policy_id).name
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Similar blocks of code found in 2 locations. Consider refactoring. Open
begin
scan_item.update!(attrs)
rescue ActiveRecord::RecordInvalid
duplicate = find_by(:name => name)
if duplicate&.prod_default == "Custom"
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 45.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Method has too many optional parameters. [9/3] Open
def raw_clone(_name, _folder, _pool = nil, _host = nil, _datastore = nil, _powerOn = false, _template_flag = false, _transform = nil, _config = nil, _customization = nil, _disk = nil)
raise NotImplementedError, _("must be implemented in a subclass")
end
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks for methods with too many parameters.
The maximum number of parameters is configurable. Keyword arguments can optionally be excluded from the total count, as they add less complexity than positional or optional parameters.
Any number of arguments for initialize
method inside a block of
Struct.new
and Data.define
like this is always allowed:
Struct.new(:one, :two, :three, :four, :five, keyword_init: true) do
def initialize(one:, two:, three:, four:, five:)
end
end
This is because checking the number of arguments of the initialize
method
does not make sense.
NOTE: Explicit block argument &block
is not counted to prevent
erroneous change that is avoided by making block argument implicit.
Example: Max: 3
# good
def foo(a, b, c = 1)
end
Example: Max: 2
# bad
def foo(a, b, c = 1)
end
Example: CountKeywordArgs: true (default)
# counts keyword args towards the maximum
# bad (assuming Max is 3)
def foo(a, b, c, d: 1)
end
# good (assuming Max is 3)
def foo(a, b, c: 1)
end
Example: CountKeywordArgs: false
# don't count keyword args towards the maximum
# good (assuming Max is 3)
def foo(a, b, c, d: 1)
end
This cop also checks for the maximum number of optional parameters.
This can be configured using the MaxOptionalParameters
config option.
Example: MaxOptionalParameters: 3 (default)
# good
def foo(a = 1, b = 2, c = 3)
end
Example: MaxOptionalParameters: 2
# bad
def foo(a = 1, b = 2, c = 3)
end
Avoid parameter lists longer than 5 parameters. [11/5] Open
def raw_clone(_name, _folder, _pool = nil, _host = nil, _datastore = nil, _powerOn = false, _template_flag = false, _transform = nil, _config = nil, _customization = nil, _disk = nil)
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks for methods with too many parameters.
The maximum number of parameters is configurable. Keyword arguments can optionally be excluded from the total count, as they add less complexity than positional or optional parameters.
Any number of arguments for initialize
method inside a block of
Struct.new
and Data.define
like this is always allowed:
Struct.new(:one, :two, :three, :four, :five, keyword_init: true) do
def initialize(one:, two:, three:, four:, five:)
end
end
This is because checking the number of arguments of the initialize
method
does not make sense.
NOTE: Explicit block argument &block
is not counted to prevent
erroneous change that is avoided by making block argument implicit.
Example: Max: 3
# good
def foo(a, b, c = 1)
end
Example: Max: 2
# bad
def foo(a, b, c = 1)
end
Example: CountKeywordArgs: true (default)
# counts keyword args towards the maximum
# bad (assuming Max is 3)
def foo(a, b, c, d: 1)
end
# good (assuming Max is 3)
def foo(a, b, c: 1)
end
Example: CountKeywordArgs: false
# don't count keyword args towards the maximum
# good (assuming Max is 3)
def foo(a, b, c, d: 1)
end
This cop also checks for the maximum number of optional parameters.
This can be configured using the MaxOptionalParameters
config option.
Example: MaxOptionalParameters: 3 (default)
# good
def foo(a = 1, b = 2, c = 3)
end
Example: MaxOptionalParameters: 2
# bad
def foo(a = 1, b = 2, c = 3)
end
Avoid parameter lists longer than 5 parameters. [11/5] Open
def clone(name, folder, pool = nil, host = nil, datastore = nil, powerOn = false, template_flag = false, transform = nil, config = nil, customization = nil, disk = nil)
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks for methods with too many parameters.
The maximum number of parameters is configurable. Keyword arguments can optionally be excluded from the total count, as they add less complexity than positional or optional parameters.
Any number of arguments for initialize
method inside a block of
Struct.new
and Data.define
like this is always allowed:
Struct.new(:one, :two, :three, :four, :five, keyword_init: true) do
def initialize(one:, two:, three:, four:, five:)
end
end
This is because checking the number of arguments of the initialize
method
does not make sense.
NOTE: Explicit block argument &block
is not counted to prevent
erroneous change that is avoided by making block argument implicit.
Example: Max: 3
# good
def foo(a, b, c = 1)
end
Example: Max: 2
# bad
def foo(a, b, c = 1)
end
Example: CountKeywordArgs: true (default)
# counts keyword args towards the maximum
# bad (assuming Max is 3)
def foo(a, b, c, d: 1)
end
# good (assuming Max is 3)
def foo(a, b, c: 1)
end
Example: CountKeywordArgs: false
# don't count keyword args towards the maximum
# good (assuming Max is 3)
def foo(a, b, c, d: 1)
end
This cop also checks for the maximum number of optional parameters.
This can be configured using the MaxOptionalParameters
config option.
Example: MaxOptionalParameters: 3 (default)
# good
def foo(a = 1, b = 2, c = 3)
end
Example: MaxOptionalParameters: 2
# bad
def foo(a = 1, b = 2, c = 3)
end
Method has too many optional parameters. [9/3] Open
def clone(name, folder, pool = nil, host = nil, datastore = nil, powerOn = false, template_flag = false, transform = nil, config = nil, customization = nil, disk = nil)
raise _("VM has no EMS, unable to clone") unless ext_management_system
raw_clone(name, folder, pool, host, datastore, powerOn, template_flag, transform, config, customization, disk)
end
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks for methods with too many parameters.
The maximum number of parameters is configurable. Keyword arguments can optionally be excluded from the total count, as they add less complexity than positional or optional parameters.
Any number of arguments for initialize
method inside a block of
Struct.new
and Data.define
like this is always allowed:
Struct.new(:one, :two, :three, :four, :five, keyword_init: true) do
def initialize(one:, two:, three:, four:, five:)
end
end
This is because checking the number of arguments of the initialize
method
does not make sense.
NOTE: Explicit block argument &block
is not counted to prevent
erroneous change that is avoided by making block argument implicit.
Example: Max: 3
# good
def foo(a, b, c = 1)
end
Example: Max: 2
# bad
def foo(a, b, c = 1)
end
Example: CountKeywordArgs: true (default)
# counts keyword args towards the maximum
# bad (assuming Max is 3)
def foo(a, b, c, d: 1)
end
# good (assuming Max is 3)
def foo(a, b, c: 1)
end
Example: CountKeywordArgs: false
# don't count keyword args towards the maximum
# good (assuming Max is 3)
def foo(a, b, c, d: 1)
end
This cop also checks for the maximum number of optional parameters.
This can be configured using the MaxOptionalParameters
config option.
Example: MaxOptionalParameters: 3 (default)
# good
def foo(a = 1, b = 2, c = 3)
end
Example: MaxOptionalParameters: 2
# bad
def foo(a = 1, b = 2, c = 3)
end
Avoid parameter lists longer than 5 parameters. [11/5] Open
def run_role_queue(env_vars, extra_vars, role_name, user_id, queue_opts, roles_path:, role_skip_facts: true, hosts: ["localhost"], credentials: [], verbosity: 0, become_enabled: false)
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks for methods with too many parameters.
The maximum number of parameters is configurable. Keyword arguments can optionally be excluded from the total count, as they add less complexity than positional or optional parameters.
Any number of arguments for initialize
method inside a block of
Struct.new
and Data.define
like this is always allowed:
Struct.new(:one, :two, :three, :four, :five, keyword_init: true) do
def initialize(one:, two:, three:, four:, five:)
end
end
This is because checking the number of arguments of the initialize
method
does not make sense.
NOTE: Explicit block argument &block
is not counted to prevent
erroneous change that is avoided by making block argument implicit.
Example: Max: 3
# good
def foo(a, b, c = 1)
end
Example: Max: 2
# bad
def foo(a, b, c = 1)
end
Example: CountKeywordArgs: true (default)
# counts keyword args towards the maximum
# bad (assuming Max is 3)
def foo(a, b, c, d: 1)
end
# good (assuming Max is 3)
def foo(a, b, c: 1)
end
Example: CountKeywordArgs: false
# don't count keyword args towards the maximum
# good (assuming Max is 3)
def foo(a, b, c, d: 1)
end
This cop also checks for the maximum number of optional parameters.
This can be configured using the MaxOptionalParameters
config option.
Example: MaxOptionalParameters: 3 (default)
# good
def foo(a = 1, b = 2, c = 3)
end
Example: MaxOptionalParameters: 2
# bad
def foo(a = 1, b = 2, c = 3)
end