Showing 1,311 of 1,311 total issues
Avoid parameter lists longer than 5 parameters. [11/5] Open
def initialize(
auto_placement_visibility_service = AutoPlacementVisibilityService.new,
number_of_vms_visibility_service = NumberOfVmsVisibilityService.new,
service_template_fields_visibility_service = ServiceTemplateFieldsVisibilityService.new,
network_visibility_service = NetworkVisibilityService.new,
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Checks for methods with too many parameters.
The maximum number of parameters is configurable. Keyword arguments can optionally be excluded from the total count, as they add less complexity than positional or optional parameters.
Any number of arguments for initialize
method inside a block of
Struct.new
and Data.define
like this is always allowed:
Struct.new(:one, :two, :three, :four, :five, keyword_init: true) do
def initialize(one:, two:, three:, four:, five:)
end
end
This is because checking the number of arguments of the initialize
method
does not make sense.
NOTE: Explicit block argument &block
is not counted to prevent
erroneous change that is avoided by making block argument implicit.
Example: Max: 3
# good
def foo(a, b, c = 1)
end
Example: Max: 2
# bad
def foo(a, b, c = 1)
end
Example: CountKeywordArgs: true (default)
# counts keyword args towards the maximum
# bad (assuming Max is 3)
def foo(a, b, c, d: 1)
end
# good (assuming Max is 3)
def foo(a, b, c: 1)
end
Example: CountKeywordArgs: false
# don't count keyword args towards the maximum
# good (assuming Max is 3)
def foo(a, b, c, d: 1)
end
This cop also checks for the maximum number of optional parameters.
This can be configured using the MaxOptionalParameters
config option.
Example: MaxOptionalParameters: 3 (default)
# good
def foo(a = 1, b = 2, c = 3)
end
Example: MaxOptionalParameters: 2
# bad
def foo(a = 1, b = 2, c = 3)
end
Identical blocks of code found in 2 locations. Consider refactoring. Open
opts = Optimist.options do
opt :ip, "IP address", :type => :string, :required => true
opt :user, "User Name", :type => :string, :required => true
opt :pass, "Password", :type => :string, :required => true
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 41.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Identical blocks of code found in 2 locations. Consider refactoring. Open
opts = Optimist.options do
opt :ip, "IP address", :type => :string, :required => true
opt :user, "User Name", :type => :string, :required => true
opt :pass, "Password", :type => :string, :required => true
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 41.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 3 locations. Consider refactoring. Open
def load_balancer_pool_member_pools
add_properties(
:manager_ref => %i[load_balancer_pool load_balancer_pool_member],
:parent_inventory_collections => %i[load_balancers]
)
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 41.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 3 locations. Consider refactoring. Open
def load_balancer_listener_pools
add_properties(
:manager_ref => %i[load_balancer_listener load_balancer_pool],
:parent_inventory_collections => %i[load_balancers]
)
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 41.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 3 locations. Consider refactoring. Open
def load_balancer_health_check_members
add_properties(
:manager_ref => %i[load_balancer_health_check load_balancer_pool_member],
:parent_inventory_collections => %i[load_balancers]
)
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 41.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
def self.evacuate_queue(userid, vm, options = {})
task_opts = {
:action => "evacuating Instance for user #{userid}",
:userid => userid
}
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 41.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
def self.live_migrate_queue(userid, vm, options = {})
task_opts = {
:action => "migrating Instance for user #{userid}",
:userid => userid
}
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 41.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Method set_role_activation
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def set_role_activation(active, *roles)
roles = roles.first if roles.length == 1 && roles[0].kind_of?(Array)
return if roles.empty?
ids = roles == ["*"] ? server_roles.pluck(:id) : ServerRole.where(:name => roles).pluck(:id)
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method post_historical_logs
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def post_historical_logs(taskid, log_depot)
task = MiqTask.find(taskid)
log_prefix = "Task: [#{task.id}]"
log_type = "Archive"
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method resolve_profiles
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def resolve_profiles(list, event = nil)
result = []
list.each do |pid|
prof = MiqPolicySet.find(pid)
next unless prof
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method wait_for_started_workers
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def wait_for_started_workers
last_which = nil
entered_wait_for_started_loop = Time.now.utc
wait_for_started_timeout = @worker_monitor_settings[:wait_for_started_timeout] || 10.minutes
loop do
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method retire_now
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def retire_now(requester = nil)
if retired
return if retired_validated?
_log.info("#{retirement_object_title}: [id:<#{id}>, name:<#{name}>], Retires On: [#{retires_on.strftime("%x %R %Z")}], was previously retired, but currently #{retired_invalid_reason}")
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method build_add_missing_timestamps
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def build_add_missing_timestamps(recs)
return recs unless !recs.empty? && (recs.first.kind_of?(Metric) || recs.first.kind_of?(MetricRollup))
return recs if db_options && db_options[:calc_avgs_by] && db_options[:calc_avgs_by] != "time_interval" # Only fill in missing timestamps if averages are requested to be based on time
base_cols = Metric::BASE_COLS - ["id"]
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method add_elements
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def self.add_elements(vm, xmlNode)
el = xmlNode.root
return nil unless MiqXml.isXmlElement?(el)
return nil unless el.name == 'scan_profiles'
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method unsupported_reason
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def unsupported_reason(feature, instance: self)
# undeclared features are not supported
value = supports_features[feature.to_sym]
if value.respond_to?(:call)
begin
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method fetch_worker_settings_from_options_hash
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def self.fetch_worker_settings_from_options_hash(options_hash, raw = false)
return {} unless options_hash.key?(:workers)
settings = {}
# Get the configuration values
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method validate_connection_settings
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def self.validate_connection_settings(host, port, username, password, database = nil, adapter = nil)
database, adapter = prepare_default_fields(database, adapter)
log_details = "Host: [#{host}]}, Database: [#{database}], Adapter: [#{adapter}], User: [#{username}]"
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method apply
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def apply
@verified_data.each do |id, data|
obj = @klass.find_by(:id => id)
if obj
attrs = obj.miq_custom_attributes
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method child_folder_paths_recursive
has a Cognitive Complexity of 14 (exceeds 11 allowed). Consider refactoring. Open
def self.child_folder_paths_recursive(subtree, options = {})
options[:prefix] ||= ""
subtree.each_with_object({}) do |(f, children), h|
path = options[:prefix]
unless options[:exclude_non_display_folders] && f.hidden?
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"