Showing 133 of 133 total issues
Method initialize
has 26 lines of code (exceeds 25 allowed). Consider refactoring. Open
def initialize(opts=Hash.new)
@name=@name_numerator=@name_denominator=nil
# First see if sum of squares or mean squares are entered
raise ArgumentError, "You should set d.f." unless (opts.has_key? :df_num and opts.has_key? :df_den)
Similar blocks of code found in 2 locations. Consider refactoring. Open
bp.rule do |r|
r.visible {|v| v[:percentil_25] > v[:low_whisker]}
r.bottom {|v| y_scale[v[:low_whisker]]}
r.left {|v| x_scale.range_band / 2.0}
r.height {|v| y_scale.scale(v[:percentil_25]) - y_scale.scale(v[:low_whisker])}
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 48.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
bp.rule do |r|
r.visible {|v| v[:percentil_75] < v[:high_whisker]}
r.bottom {|v| y_scale.scale(v[:percentil_75])}
r.left {|v| x_scale.range_band / 2.0}
r.height {|v| y_scale.scale(v[:high_whisker]) - y_scale.scale(v[:percentil_75])}
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 48.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
def covariance_matrix(ds)
vars,cases = ds.ncols, ds.nrows
if !ds.include_values?(*Daru::MISSING_VALUES) and Statsample.has_gsl? and prediction_optimized(vars,cases) < prediction_pairwise(vars,cases)
cm=covariance_matrix_optimized(ds)
else
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 45.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Method prop_pearson
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def prop_pearson(t, size, tails=:both)
tails=:both if tails==2
tails=:right if tails==1 or tails==:positive
tails=:left if tails==:negative
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method iterate
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def iterate(m=nil)
@clean=false
m||=@m
@m=m
t = @max_iterations
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Similar blocks of code found in 2 locations. Consider refactoring. Open
def correlation_matrix(ds)
vars, cases = ds.ncols, ds.nrows
if !ds.include_values?(*Daru::MISSING_VALUES) and Statsample.has_gsl? and prediction_optimized(vars,cases) < prediction_pairwise(vars,cases)
cm=correlation_matrix_optimized(ds)
else
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 45.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Method constant_se
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def constant_se
return nil if @no_covariance
means=@x_mean
#means[@y_var]=@y_mean
means[:constant]=1
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method initialize
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def initialize(matrix,y_var, opts=Hash.new)
matrix.extend Statsample::CovariateMatrix
raise "#{y_var} variable should be on data" unless matrix.fields.include? y_var
if matrix._type==:covariance
@matrix_cov=matrix
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method init_gsl
has 7 arguments (exceeds 4 allowed). Consider refactoring. Open
def init_gsl(a,b,cov00, cov01, covx1, chisq, status)
Similar blocks of code found in 3 locations. Consider refactoring. Open
def icc_1_k_ci(alpha=0.05)
per=1-(0.5*alpha)
fu=icc_1_f.f*Distribution::F.p_value(per, @df_wt, @df_bt)
fl=icc_1_f.f.quo(Distribution::F.p_value(per, @df_bt, @df_wt))
[1-1.quo(fl), 1-1.quo(fu)]
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 41.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 3 locations. Consider refactoring. Open
def icc_3_k_ci(alpha=0.05)
per=1-(0.5*alpha)
fl=icc_3_f.f.quo(Distribution::F.p_value(per, @df_bt, @df_residual))
fu=icc_3_f.f*Distribution::F.p_value(per, @df_residual, @df_bt)
[1-1.quo(fl),1-1.quo(fu)]
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 41.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 3 locations. Consider refactoring. Open
def icc_c_k_ci(alpha=0.05)
per=1-(0.5*alpha)
fl=icc_c_k_f.f.quo(Distribution::F.p_value(per, @df_bt, @df_residual))
fu=icc_c_k_f.f*Distribution::F.p_value(per, @df_residual, @df_bt)
[1-1.quo(fl),1-1.quo(fu)]
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 41.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Method initialize
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def initialize(opts=Hash.new)
@name=@name_numerator=@name_denominator=nil
# First see if sum of squares or mean squares are entered
raise ArgumentError, "You should set d.f." unless (opts.has_key? :df_num and opts.has_key? :df_den)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method conditional_dominance_pairwise
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def conditional_dominance_pairwise(i,j)
dm=dominance_for_nil_model(i,j)
return 0.5 if dm==0.5
dominances=[dm]
for k in 1...@predictors.size
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method nice
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def self.nice(s, e) # :nodoc:
reverse = e < s
min = reverse ? e : s
max = reverse ? s : e
span = max - min
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method increment
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def increment(x, w=1)
if x.respond_to? :each
x.each{|y| increment(y,w) }
elsif x.is_a? Numeric
(range.size - 1).times do |i|
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method report_building
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def report_building(b)
di="%0.#{digits}f"
b.section(:name=>@name) do |g|
c=coeffs
g.text _("Engine: %s") % self.class
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method p_using_cdf
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def p_using_cdf(cdf, tails=:both)
tails=:both if tails==2 or tails==:two
tails=:right if tails==1 or tails==:positive
tails=:left if tails==:negative
case tails
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method separate_matrices
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def self.separate_matrices(matrix, y)
ac=[]
matrix.column_size.times do |i|
ac.push(matrix[y,i]) if i!=y
end
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"