Showing 14,752 of 14,752 total issues
Define a constant instead of duplicating this literal "Matrices" 3 times. Open
MyTable mat = DBKernel.myDBi.getTable("Matrices");
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Refactor this method to reduce its Cognitive Complexity from 40 to the 15 allowed. Open
public BufferedDataTable getOutputTable(String assignments,
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.
See
Define a constant instead of duplicating this literal "Please switch the ports!" 3 times. Open
error = "Please switch the ports!";
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Add a nested comment explaining why this method is empty, throw an UnsupportedOperationException or complete the implementation. Open
protected void validateSettings(final NodeSettingsRO settings)
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
There are several reasons for a method not to have a method body:
- It is an unintentional omission, and should be fixed to prevent an unexpected behavior in production.
- It is not yet, or never will be, supported. In this case an
UnsupportedOperationException
should be thrown. - The method is an intentionally-blank override. In this case a nested comment should explain the reason for the blank override.
Noncompliant Code Example
public void doSomething() { } public void doSomethingElse() { }
Compliant Solution
@Override public void doSomething() { // Do nothing because of X and Y. } @Override public void doSomethingElse() { throw new UnsupportedOperationException(); }
Exceptions
Default (no-argument) constructors are ignored when there are other constructors in the class, as are empty methods in abstract classes.
public abstract class Animal { void speak() { // default implementation ignored } }
Define a constant instead of duplicating this literal " FROM " 4 times. Open
String sql = "SELECT " + DBKernel.delimitL("ID") + " FROM " + DBKernel.delimitL("GeschaetzteModelle")
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Refactor this method to reduce its Cognitive Complexity from 29 to the 15 allowed. Open
public void actionPerformed(ActionEvent e) {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.
See
Refactor this method to reduce its Cognitive Complexity from 42 to the 15 allowed. Open
private PmmTimeSeries stepNew(BufferedReader reader) throws IOException {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.
See
Define a constant instead of duplicating this literal "IndepUnit" 4 times. Open
result.getArray("IndepUnit"), result.getArray("IndepDescription"), true);
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Replace this call to "replaceAll()" by a call to the "replace()" method. Open
formula = formula.replaceAll("~", "=").replaceAll("\\s", "");
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
The underlying implementation of String::replaceAll
calls the java.util.regex.Pattern.compile()
method each time it is
called even if the first argument is not a regular expression. This has a significant performance cost and therefore should be used with care.
When String::replaceAll
is used, the first argument should be a real regular expression. If it’s not the case,
String::replace
does exactly the same thing as String::replaceAll
without the performance drawback of the regex.
This rule raises an issue for each String::replaceAll
used with a String
as first parameter which doesn’t contains
special regex character or pattern.
Noncompliant Code Example
String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!"; String changed = init.replaceAll("Bob is", "It's"); // Noncompliant changed = changed.replaceAll("\\.\\.\\.", ";"); // Noncompliant
Compliant Solution
String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!"; String changed = init.replace("Bob is", "It's"); changed = changed.replace("...", ";");
Or, with a regex:
String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!"; String changed = init.replaceAll("\\w*\\sis", "It's"); changed = changed.replaceAll("\\.{3}", ";");
See
- {rule:java:S4248} - Regex patterns should not be created needlessly
Add a nested comment explaining why this method is empty, throw an UnsupportedOperationException or complete the implementation. Open
protected void loadInternals(final File internDir,
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
There are several reasons for a method not to have a method body:
- It is an unintentional omission, and should be fixed to prevent an unexpected behavior in production.
- It is not yet, or never will be, supported. In this case an
UnsupportedOperationException
should be thrown. - The method is an intentionally-blank override. In this case a nested comment should explain the reason for the blank override.
Noncompliant Code Example
public void doSomething() { } public void doSomethingElse() { }
Compliant Solution
@Override public void doSomething() { // Do nothing because of X and Y. } @Override public void doSomethingElse() { throw new UnsupportedOperationException(); }
Exceptions
Default (no-argument) constructors are ignored when there are other constructors in the class, as are empty methods in abstract classes.
public abstract class Animal { void speak() { // default implementation ignored } }
Refactor this method to reduce its Cognitive Complexity from 28 to the 15 allowed. Open
public void actionPerformed(ActionEvent e) {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.
See
Add a nested comment explaining why this method is empty, throw an UnsupportedOperationException or complete the implementation. Open
protected void reset() {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
There are several reasons for a method not to have a method body:
- It is an unintentional omission, and should be fixed to prevent an unexpected behavior in production.
- It is not yet, or never will be, supported. In this case an
UnsupportedOperationException
should be thrown. - The method is an intentionally-blank override. In this case a nested comment should explain the reason for the blank override.
Noncompliant Code Example
public void doSomething() { } public void doSomethingElse() { }
Compliant Solution
@Override public void doSomething() { // Do nothing because of X and Y. } @Override public void doSomethingElse() { throw new UnsupportedOperationException(); }
Exceptions
Default (no-argument) constructors are ignored when there are other constructors in the class, as are empty methods in abstract classes.
public abstract class Animal { void speak() { // default implementation ignored } }
Refactor this method to reduce its Cognitive Complexity from 91 to the 15 allowed. Open
public void run() {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.
See
Add a nested comment explaining why this method is empty, throw an UnsupportedOperationException or complete the implementation. Open
protected void loadInternals(final File internDir,
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
There are several reasons for a method not to have a method body:
- It is an unintentional omission, and should be fixed to prevent an unexpected behavior in production.
- It is not yet, or never will be, supported. In this case an
UnsupportedOperationException
should be thrown. - The method is an intentionally-blank override. In this case a nested comment should explain the reason for the blank override.
Noncompliant Code Example
public void doSomething() { } public void doSomethingElse() { }
Compliant Solution
@Override public void doSomething() { // Do nothing because of X and Y. } @Override public void doSomethingElse() { throw new UnsupportedOperationException(); }
Exceptions
Default (no-argument) constructors are ignored when there are other constructors in the class, as are empty methods in abstract classes.
public abstract class Animal { void speak() { // default implementation ignored } }
Refactor this method to reduce its Cognitive Complexity from 32 to the 15 allowed. Open
protected BufferedDataTable[] execute(final BufferedDataTable[] inData, final ExecutionContext exec) throws Exception {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.
See
Add a default case to this switch. Open
switch (featureID) {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
The requirement for a final default
clause is defensive programming. The clause should either take appropriate action, or contain a
suitable comment as to why no action is taken.
Noncompliant Code Example
switch (param) { //missing default clause case 0: doSomething(); break; case 1: doSomethingElse(); break; } switch (param) { default: // default clause should be the last one error(); break; case 0: doSomething(); break; case 1: doSomethingElse(); break; }
Compliant Solution
switch (param) { case 0: doSomething(); break; case 1: doSomethingElse(); break; default: error(); break; }
Exceptions
If the switch
parameter is an Enum
and if all the constants of this enum are used in the case
statements,
then no default
clause is expected.
Example:
public enum Day { SUNDAY, MONDAY } ... switch(day) { case SUNDAY: doSomething(); break; case MONDAY: doSomethingElse(); break; }
See
- MITRE, CWE-478 - Missing Default Case in Switch Statement
- CERT, MSC01-C. - Strive for logical completeness
Add a default case to this switch. Open
switch (featureID) {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
The requirement for a final default
clause is defensive programming. The clause should either take appropriate action, or contain a
suitable comment as to why no action is taken.
Noncompliant Code Example
switch (param) { //missing default clause case 0: doSomething(); break; case 1: doSomethingElse(); break; } switch (param) { default: // default clause should be the last one error(); break; case 0: doSomething(); break; case 1: doSomethingElse(); break; }
Compliant Solution
switch (param) { case 0: doSomething(); break; case 1: doSomethingElse(); break; default: error(); break; }
Exceptions
If the switch
parameter is an Enum
and if all the constants of this enum are used in the case
statements,
then no default
clause is expected.
Example:
public enum Day { SUNDAY, MONDAY } ... switch(day) { case SUNDAY: doSomething(); break; case MONDAY: doSomethingElse(); break; }
See
- MITRE, CWE-478 - Missing Default Case in Switch Statement
- CERT, MSC01-C. - Strive for logical completeness
Add a default case to this switch. Open
switch (featureID) {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
The requirement for a final default
clause is defensive programming. The clause should either take appropriate action, or contain a
suitable comment as to why no action is taken.
Noncompliant Code Example
switch (param) { //missing default clause case 0: doSomething(); break; case 1: doSomethingElse(); break; } switch (param) { default: // default clause should be the last one error(); break; case 0: doSomething(); break; case 1: doSomethingElse(); break; }
Compliant Solution
switch (param) { case 0: doSomething(); break; case 1: doSomethingElse(); break; default: error(); break; }
Exceptions
If the switch
parameter is an Enum
and if all the constants of this enum are used in the case
statements,
then no default
clause is expected.
Example:
public enum Day { SUNDAY, MONDAY } ... switch(day) { case SUNDAY: doSomething(); break; case MONDAY: doSomethingElse(); break; }
See
- MITRE, CWE-478 - Missing Default Case in Switch Statement
- CERT, MSC01-C. - Strive for logical completeness
Add a default case to this switch. Open
switch (featureID) {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
The requirement for a final default
clause is defensive programming. The clause should either take appropriate action, or contain a
suitable comment as to why no action is taken.
Noncompliant Code Example
switch (param) { //missing default clause case 0: doSomething(); break; case 1: doSomethingElse(); break; } switch (param) { default: // default clause should be the last one error(); break; case 0: doSomething(); break; case 1: doSomethingElse(); break; }
Compliant Solution
switch (param) { case 0: doSomething(); break; case 1: doSomethingElse(); break; default: error(); break; }
Exceptions
If the switch
parameter is an Enum
and if all the constants of this enum are used in the case
statements,
then no default
clause is expected.
Example:
public enum Day { SUNDAY, MONDAY } ... switch(day) { case SUNDAY: doSomething(); break; case MONDAY: doSomethingElse(); break; }
See
- MITRE, CWE-478 - Missing Default Case in Switch Statement
- CERT, MSC01-C. - Strive for logical completeness
Refactor this method to reduce its Cognitive Complexity from 29 to the 15 allowed. Open
public boolean eIsSet(int featureID) {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.