Showing 14,752 of 14,752 total issues
Define a constant instead of duplicating this literal "LAST_OUTPUT_DIR" 4 times. Open
String lastOutDir = DBKernel.prefs.get("LAST_OUTPUT_DIR", "");
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "BOOLEAN" 3 times. Open
else if (fieldTypes[j].equals("BOOLEAN")) manageBoolean(ps, psUpdate, lfdCol, row.getCell(j));
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Replace this call to "replaceAll()" by a call to the "replace()" method. Open
if (feldVals[i] != null) feldVals[i] = feldVals[i].replaceAll("'", "\\apos");
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
The underlying implementation of String::replaceAll
calls the java.util.regex.Pattern.compile()
method each time it is
called even if the first argument is not a regular expression. This has a significant performance cost and therefore should be used with care.
When String::replaceAll
is used, the first argument should be a real regular expression. If it’s not the case,
String::replace
does exactly the same thing as String::replaceAll
without the performance drawback of the regex.
This rule raises an issue for each String::replaceAll
used with a String
as first parameter which doesn’t contains
special regex character or pattern.
Noncompliant Code Example
String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!"; String changed = init.replaceAll("Bob is", "It's"); // Noncompliant changed = changed.replaceAll("\\.\\.\\.", ";"); // Noncompliant
Compliant Solution
String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!"; String changed = init.replace("Bob is", "It's"); changed = changed.replace("...", ";");
Or, with a regex:
String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!"; String changed = init.replaceAll("\\w*\\sis", "It's"); changed = changed.replaceAll("\\.{3}", ";");
See
- {rule:java:S4248} - Regex patterns should not be created needlessly
Use try-with-resources or close this "PreparedStatement" in a "finally" clause. Open
PreparedStatement psmt = getDBConnection().prepareStatement(sql);
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Connections, streams, files, and other classes that implement the Closeable
interface or its super-interface,
AutoCloseable
, needs to be closed after use. Further, that close
call must be made in a finally
block otherwise
an exception could keep the call from being made. Preferably, when class implements AutoCloseable
, resource should be created using
"try-with-resources" pattern and will be closed automatically.
Failure to properly close resources will result in a resource leak which could bring first the application and then perhaps the box the application is on to their knees.
Noncompliant Code Example
private void readTheFile() throws IOException { Path path = Paths.get(this.fileName); BufferedReader reader = Files.newBufferedReader(path, this.charset); // ... reader.close(); // Noncompliant // ... Files.lines("input.txt").forEach(System.out::println); // Noncompliant: The stream needs to be closed } private void doSomething() { OutputStream stream = null; try { for (String property : propertyList) { stream = new FileOutputStream("myfile.txt"); // Noncompliant // ... } } catch (Exception e) { // ... } finally { stream.close(); // Multiple streams were opened. Only the last is closed. } }
Compliant Solution
private void readTheFile(String fileName) throws IOException { Path path = Paths.get(fileName); try (BufferedReader reader = Files.newBufferedReader(path, StandardCharsets.UTF_8)) { reader.readLine(); // ... } // .. try (Stream<String> input = Files.lines("input.txt")) { input.forEach(System.out::println); } } private void doSomething() { OutputStream stream = null; try { stream = new FileOutputStream("myfile.txt"); for (String property : propertyList) { // ... } } catch (Exception e) { // ... } finally { stream.close(); } }
Exceptions
Instances of the following classes are ignored by this rule because close
has no effect:
-
java.io.ByteArrayOutputStream
-
java.io.ByteArrayInputStream
-
java.io.CharArrayReader
-
java.io.CharArrayWriter
-
java.io.StringReader
-
java.io.StringWriter
Java 7 introduced the try-with-resources statement, which implicitly closes Closeables
. All resources opened in a try-with-resources
statement are ignored by this rule.
try (BufferedReader br = new BufferedReader(new FileReader(fileName))) { //... } catch ( ... ) { //... }
See
- MITRE, CWE-459 - Incomplete Cleanup
- MITRE, CWE-772 - Missing Release of Resource after Effective Lifetime
- CERT, FIO04-J. - Release resources when they are no longer needed
- CERT, FIO42-C. - Close files when they are no longer needed
- Try With Resources
Define a constant instead of duplicating this literal "Literatur" 5 times. Open
String sql = "INSERT INTO " + DBKernel.delimitL("Literatur") +
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Use try-with-resources or close this "Statement" in a "finally" clause. Open
Statement anfrage = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY);
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Connections, streams, files, and other classes that implement the Closeable
interface or its super-interface,
AutoCloseable
, needs to be closed after use. Further, that close
call must be made in a finally
block otherwise
an exception could keep the call from being made. Preferably, when class implements AutoCloseable
, resource should be created using
"try-with-resources" pattern and will be closed automatically.
Failure to properly close resources will result in a resource leak which could bring first the application and then perhaps the box the application is on to their knees.
Noncompliant Code Example
private void readTheFile() throws IOException { Path path = Paths.get(this.fileName); BufferedReader reader = Files.newBufferedReader(path, this.charset); // ... reader.close(); // Noncompliant // ... Files.lines("input.txt").forEach(System.out::println); // Noncompliant: The stream needs to be closed } private void doSomething() { OutputStream stream = null; try { for (String property : propertyList) { stream = new FileOutputStream("myfile.txt"); // Noncompliant // ... } } catch (Exception e) { // ... } finally { stream.close(); // Multiple streams were opened. Only the last is closed. } }
Compliant Solution
private void readTheFile(String fileName) throws IOException { Path path = Paths.get(fileName); try (BufferedReader reader = Files.newBufferedReader(path, StandardCharsets.UTF_8)) { reader.readLine(); // ... } // .. try (Stream<String> input = Files.lines("input.txt")) { input.forEach(System.out::println); } } private void doSomething() { OutputStream stream = null; try { stream = new FileOutputStream("myfile.txt"); for (String property : propertyList) { // ... } } catch (Exception e) { // ... } finally { stream.close(); } }
Exceptions
Instances of the following classes are ignored by this rule because close
has no effect:
-
java.io.ByteArrayOutputStream
-
java.io.ByteArrayInputStream
-
java.io.CharArrayReader
-
java.io.CharArrayWriter
-
java.io.StringReader
-
java.io.StringWriter
Java 7 introduced the try-with-resources statement, which implicitly closes Closeables
. All resources opened in a try-with-resources
statement are ignored by this rule.
try (BufferedReader br = new BufferedReader(new FileReader(fileName))) { //... } catch ( ... ) { //... }
See
- MITRE, CWE-459 - Incomplete Cleanup
- MITRE, CWE-772 - Missing Release of Resource after Effective Lifetime
- CERT, FIO04-J. - Release resources when they are no longer needed
- CERT, FIO42-C. - Close files when they are no longer needed
- Try With Resources
Define a constant instead of duplicating this literal "Serial" 5 times. Open
"Serial" }, new String[] { id, name, street, streetNumber, zip, city, county, country, kind, vat, null, serial }, new boolean[] { true, true, true, true, true,
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Use try-with-resources or close this "Statement" in a "finally" clause. Open
Statement anfrage = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY);
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Connections, streams, files, and other classes that implement the Closeable
interface or its super-interface,
AutoCloseable
, needs to be closed after use. Further, that close
call must be made in a finally
block otherwise
an exception could keep the call from being made. Preferably, when class implements AutoCloseable
, resource should be created using
"try-with-resources" pattern and will be closed automatically.
Failure to properly close resources will result in a resource leak which could bring first the application and then perhaps the box the application is on to their knees.
Noncompliant Code Example
private void readTheFile() throws IOException { Path path = Paths.get(this.fileName); BufferedReader reader = Files.newBufferedReader(path, this.charset); // ... reader.close(); // Noncompliant // ... Files.lines("input.txt").forEach(System.out::println); // Noncompliant: The stream needs to be closed } private void doSomething() { OutputStream stream = null; try { for (String property : propertyList) { stream = new FileOutputStream("myfile.txt"); // Noncompliant // ... } } catch (Exception e) { // ... } finally { stream.close(); // Multiple streams were opened. Only the last is closed. } }
Compliant Solution
private void readTheFile(String fileName) throws IOException { Path path = Paths.get(fileName); try (BufferedReader reader = Files.newBufferedReader(path, StandardCharsets.UTF_8)) { reader.readLine(); // ... } // .. try (Stream<String> input = Files.lines("input.txt")) { input.forEach(System.out::println); } } private void doSomething() { OutputStream stream = null; try { stream = new FileOutputStream("myfile.txt"); for (String property : propertyList) { // ... } } catch (Exception e) { // ... } finally { stream.close(); } }
Exceptions
Instances of the following classes are ignored by this rule because close
has no effect:
-
java.io.ByteArrayOutputStream
-
java.io.ByteArrayInputStream
-
java.io.CharArrayReader
-
java.io.CharArrayWriter
-
java.io.StringReader
-
java.io.StringWriter
Java 7 introduced the try-with-resources statement, which implicitly closes Closeables
. All resources opened in a try-with-resources
statement are ignored by this rule.
try (BufferedReader br = new BufferedReader(new FileReader(fileName))) { //... } catch ( ... ) { //... }
See
- MITRE, CWE-459 - Incomplete Cleanup
- MITRE, CWE-772 - Missing Release of Resource after Effective Lifetime
- CERT, FIO04-J. - Release resources when they are no longer needed
- CERT, FIO42-C. - Close files when they are no longer needed
- Try With Resources
Define a constant instead of duplicating this literal "DateiSpeicher" 4 times. Open
String sql = "DELETE FROM " + delimitL("DateiSpeicher") + " WHERE " + delimitL("TabellenID") + "=" + id + " AND" + delimitL("Tabelle") + "='" + tableName + "' AND "
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "ChangeLog" 6 times. Open
hideComment = tableName.equals("ChangeLog") || tableName.equals("DateiSpeicher") || tableName.equals("ComBaseImport") || tableName.equals("Nachweisverfahren_Kits")
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Refactor this method to reduce its Cognitive Complexity from 143 to the 15 allowed. Open
private void transformFormat(HSSFWorkbook wb, HSSFWorkbook wbNew) {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.
See
Define a constant instead of duplicating this literal "Username" 6 times. Open
String sql = "SELECT " + delimitL("Username") + "," + delimitL("Zeitstempel") + " FROM " + delimitL("ChangeLog") + " WHERE " + delimitL("Tabelle") + " = '" + tablename
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "SonstigeParameter" 3 times. Open
String sql = "SELECT " + DBKernel.delimitL("Parameter") + " FROM " + DBKernel.delimitL("SonstigeParameter");
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Refactor this method to reduce its Cognitive Complexity from 16 to the 15 allowed. Open
private static Object getValue(Connection conn, final String tablename, final String[] feldname, final String[] feldVal, final String desiredColumn, boolean suppressWarnings) {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.
See
Refactor this method to reduce its Cognitive Complexity from 18 to the 15 allowed. Open
private String getStrVal(HSSFCell cell, int maxChars) {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.
See
Refactor this method to reduce its Cognitive Complexity from 16 to the 15 allowed. Open
public static File getCopyOfInternalDB() {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.
See
Rename method "getUpdateSql2" to prevent any misunderstanding/clash with method "getUpdateSQL2" defined on line 451. Open
private String getUpdateSql2() {
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Looking at the set of methods in a class, including superclass methods, and finding two methods or fields that differ only by capitalization is confusing to users of the class. It is similarly confusing to have a method and a field which differ only in capitalization or a method and a field with exactly the same name and visibility.
In the case of methods, it may have been a mistake on the part of the original developer, who intended to override a superclass method, but instead added a new method with nearly the same name.
Otherwise, this situation simply indicates poor naming. Method names should be action-oriented, and thus contain a verb, which is unlikely in the case where both a method and a member have the same name (with or without capitalization differences). However, renaming a public method could be disruptive to callers. Therefore renaming the member is the recommended action.
Noncompliant Code Example
public class Car{ public DriveTrain drive; public void tearDown(){...} public void drive() {...} // Noncompliant; duplicates field name } public class MyCar extends Car{ public void teardown(){...} // Noncompliant; not an override. It it really what's intended? public void drivefast(){...} public void driveFast(){...} //Huh? }
Compliant Solution
public class Car{ private DriveTrain drive; public void tearDown(){...} public void drive() {...} // field visibility reduced } public class MyCar extends Car{ @Override public void tearDown(){...} public void drivefast(){...} public void driveReallyFast(){...} }
Define a constant instead of duplicating this literal "UPDATE " 18 times. Open
String sql = "UPDATE " + DBKernel.delimitL("Chargen") + " SET " + DBKernel.delimitL("OriginCountry") + "=LEFT(" + DBKernel.delimitL("Kommentar") + ",CASEWHEN(INSTR("
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Use try-with-resources or close this "PreparedStatement" in a "finally" clause. Open
PreparedStatement psmt = getDBConnection().prepareStatement(sql);
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Connections, streams, files, and other classes that implement the Closeable
interface or its super-interface,
AutoCloseable
, needs to be closed after use. Further, that close
call must be made in a finally
block otherwise
an exception could keep the call from being made. Preferably, when class implements AutoCloseable
, resource should be created using
"try-with-resources" pattern and will be closed automatically.
Failure to properly close resources will result in a resource leak which could bring first the application and then perhaps the box the application is on to their knees.
Noncompliant Code Example
private void readTheFile() throws IOException { Path path = Paths.get(this.fileName); BufferedReader reader = Files.newBufferedReader(path, this.charset); // ... reader.close(); // Noncompliant // ... Files.lines("input.txt").forEach(System.out::println); // Noncompliant: The stream needs to be closed } private void doSomething() { OutputStream stream = null; try { for (String property : propertyList) { stream = new FileOutputStream("myfile.txt"); // Noncompliant // ... } } catch (Exception e) { // ... } finally { stream.close(); // Multiple streams were opened. Only the last is closed. } }
Compliant Solution
private void readTheFile(String fileName) throws IOException { Path path = Paths.get(fileName); try (BufferedReader reader = Files.newBufferedReader(path, StandardCharsets.UTF_8)) { reader.readLine(); // ... } // .. try (Stream<String> input = Files.lines("input.txt")) { input.forEach(System.out::println); } } private void doSomething() { OutputStream stream = null; try { stream = new FileOutputStream("myfile.txt"); for (String property : propertyList) { // ... } } catch (Exception e) { // ... } finally { stream.close(); } }
Exceptions
Instances of the following classes are ignored by this rule because close
has no effect:
-
java.io.ByteArrayOutputStream
-
java.io.ByteArrayInputStream
-
java.io.CharArrayReader
-
java.io.CharArrayWriter
-
java.io.StringReader
-
java.io.StringWriter
Java 7 introduced the try-with-resources statement, which implicitly closes Closeables
. All resources opened in a try-with-resources
statement are ignored by this rule.
try (BufferedReader br = new BufferedReader(new FileReader(fileName))) { //... } catch ( ... ) { //... }
See
- MITRE, CWE-459 - Incomplete Cleanup
- MITRE, CWE-772 - Missing Release of Resource after Effective Lifetime
- CERT, FIO04-J. - Release resources when they are no longer needed
- CERT, FIO42-C. - Close files when they are no longer needed
- Try With Resources
Use try-with-resources or close this "ZipInputStream" in a "finally" clause. Open
ZipInputStream zis = new ZipInputStream(fis);
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Connections, streams, files, and other classes that implement the Closeable
interface or its super-interface,
AutoCloseable
, needs to be closed after use. Further, that close
call must be made in a finally
block otherwise
an exception could keep the call from being made. Preferably, when class implements AutoCloseable
, resource should be created using
"try-with-resources" pattern and will be closed automatically.
Failure to properly close resources will result in a resource leak which could bring first the application and then perhaps the box the application is on to their knees.
Noncompliant Code Example
private void readTheFile() throws IOException { Path path = Paths.get(this.fileName); BufferedReader reader = Files.newBufferedReader(path, this.charset); // ... reader.close(); // Noncompliant // ... Files.lines("input.txt").forEach(System.out::println); // Noncompliant: The stream needs to be closed } private void doSomething() { OutputStream stream = null; try { for (String property : propertyList) { stream = new FileOutputStream("myfile.txt"); // Noncompliant // ... } } catch (Exception e) { // ... } finally { stream.close(); // Multiple streams were opened. Only the last is closed. } }
Compliant Solution
private void readTheFile(String fileName) throws IOException { Path path = Paths.get(fileName); try (BufferedReader reader = Files.newBufferedReader(path, StandardCharsets.UTF_8)) { reader.readLine(); // ... } // .. try (Stream<String> input = Files.lines("input.txt")) { input.forEach(System.out::println); } } private void doSomething() { OutputStream stream = null; try { stream = new FileOutputStream("myfile.txt"); for (String property : propertyList) { // ... } } catch (Exception e) { // ... } finally { stream.close(); } }
Exceptions
Instances of the following classes are ignored by this rule because close
has no effect:
-
java.io.ByteArrayOutputStream
-
java.io.ByteArrayInputStream
-
java.io.CharArrayReader
-
java.io.CharArrayWriter
-
java.io.StringReader
-
java.io.StringWriter
Java 7 introduced the try-with-resources statement, which implicitly closes Closeables
. All resources opened in a try-with-resources
statement are ignored by this rule.
try (BufferedReader br = new BufferedReader(new FileReader(fileName))) { //... } catch ( ... ) { //... }
See
- MITRE, CWE-459 - Incomplete Cleanup
- MITRE, CWE-772 - Missing Release of Resource after Effective Lifetime
- CERT, FIO04-J. - Release resources when they are no longer needed
- CERT, FIO42-C. - Close files when they are no longer needed
- Try With Resources