jenkinsci/hpe-application-automation-tools-plugin

View on GitHub

Showing 716 of 716 total issues

Define a constant instead of duplicating this literal "disabled" 4 times.
Open

                        taxonomyJson.put("disabled", "disabled");

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Define a constant instead of duplicating this literal "tagName" 4 times.
Open

                        .setName(jsonObject.getString("tagName"))

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

This block of commented-out lines of code should be removed.
Open

            // we shall use "if (extensible){}" on following line, but we do not have UI ready for the case: multiValue = true & extensible = true

Programmers should not comment out code as it bloats programs and reduces readability.

Unused code should be deleted and can be retrieved from source control history if required.

Add a private constructor to hide the implicit public one.
Open

public class FodConfigUtil {

Utility classes, which are collections of static members, are not meant to be instantiated. Even abstract utility classes, which can be extended, should not have public constructors.

Java adds an implicit public constructor to every class which does not define at least one explicitly. Hence, at least one non-public constructor should be defined.

Noncompliant Code Example

class StringUtils { // Noncompliant

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Compliant Solution

class StringUtils { // Compliant

  private StringUtils() {
    throw new IllegalStateException("Utility class");
  }

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Exceptions

When class contains public static void main(String[] args) method it is not considered as utility class and will be ignored by this rule.

Define a constant instead of duplicating this literal "%s: %s " 7 times.
Open

                        "%s: %s \n" +

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Refactor this method to reduce its Cognitive Complexity from 36 to the 15 allowed.
Open

    public int startRun() throws NumberFormatException, ClientProtocolException, PcException, IOException {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Extract this nested try block into a separate method.
Open

                try {

Nesting try/catch blocks severely impacts the readability of source code because it makes it too difficult to understand which block will catch which exception.

Refactor this method to reduce its Cognitive Complexity from 32 to the 15 allowed.
Open

    public static UftRunAsUser getRunAsUser(@Nonnull Run<?, ?> build, @Nonnull TaskListener listener) throws IllegalArgumentException {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

"build" is a method parameter, and should not be used for synchronization.
Open

        synchronized (build) {
            LrScriptHtmlReportAction action = build.getAction(LrScriptHtmlReportAction.class);
            if (action == null) {
                action = new LrScriptHtmlReportAction(build);
                action.mergeResult(build, scriptName);

Synchronizing on a class field synchronizes not on the field itself, but on the object assigned to it. So synchronizing on a non-final field makes it possible for the field's value to change while a thread is in a block synchronized on the old value. That would allow a second thread, synchronized on the new value, to enter the block at the same time.

The story is very similar for synchronizing on parameters; two different threads running the method in parallel could pass two different object instances in to the method as parameters, completely undermining the synchronization.

Noncompliant Code Example

private String color = "red";

private void doSomething(){
  synchronized(color) {  // Noncompliant; lock is actually on object instance "red" referred to by the color variable
    //...
    color = "green"; // other threads now allowed into this block
    // ...
  }
  synchronized(new Object()) { // Noncompliant this is a no-op.
     // ...
  }
}

Compliant Solution

private String color = "red";
private final Object lockObj = new Object();

private void doSomething(){
  synchronized(lockObj) {
    //...
    color = "green";
    // ...
  }
}

See

  • MITRE, CWE-412 - Unrestricted Externally Accessible Lock
  • MITRE, CWE-413 - Improper Resource Locking
  • CERT, LCK00-J. - Use private final lock objects to synchronize classes that may interact with untrusted code

Add a private constructor to hide the implicit public one.
Open

public class UftConstants {

Utility classes, which are collections of static members, are not meant to be instantiated. Even abstract utility classes, which can be extended, should not have public constructors.

Java adds an implicit public constructor to every class which does not define at least one explicitly. Hence, at least one non-public constructor should be defined.

Noncompliant Code Example

class StringUtils { // Noncompliant

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Compliant Solution

class StringUtils { // Compliant

  private StringUtils() {
    throw new IllegalStateException("Utility class");
  }

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Exceptions

When class contains public static void main(String[] args) method it is not considered as utility class and will be ignored by this rule.

Define a constant instead of duplicating this literal "%s is required" 4 times.
Open

            throw new IllegalArgumentException(String.format("%s is required", UFT_RUN_AS_USER_NAME));

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Enable server certificate validation on this SSL/TLS connection.
Open

            public void checkClientTrusted(X509Certificate[] chain, String authType) throws CertificateException {

Validation of X.509 certificates is essential to create secure SSL/TLS sessions not vulnerable to man-in-the-middle attacks.

The certificate chain validation includes these steps:

  • The certificate is issued by its parent Certificate Authority or the root CA trusted by the system.
  • Each CA is allowed to issue certificates.
  • Each certificate in the chain is not expired.

This rule raises an issue when an implementation of X509TrustManager is not controlling the validity of the certificate (ie: no exception is raised). Empty implementations of the X509TrustManager interface are often created to disable certificate validation. The correct solution is to provide an appropriate trust store.

Noncompliant Code Example

class TrustAllManager implements X509TrustManager {

    @Override
    public void checkClientTrusted(X509Certificate[] chain, String authType) throws CertificateException {  // Noncompliant, nothing means trust any client
    }

    @Override
    public void checkServerTrusted(X509Certificate[] chain, String authType) throws CertificateException { // Noncompliant, this method never throws exception, it means trust any server
        LOG.log(Level.SEVERE, ERROR_MESSAGE);
    }

    @Override
    public X509Certificate[] getAcceptedIssuers() {
        return null;
    }
}

See

Return an empty array instead of null.
Open

                return null;

Returning null instead of an actual array or collection forces callers of the method to explicitly test for nullity, making them more complex and less readable.

Moreover, in many cases, null is used as a synonym for empty.

Noncompliant Code Example

public static List<Result> getResults() {
  return null;                             // Noncompliant
}

public static Result[] getResults() {
  return null;                             // Noncompliant
}

public static void main(String[] args) {
  Result[] results = getResults();

  if (results != null) {                   // Nullity test required to prevent NPE
    for (Result result: results) {
      /* ... */
    }
  }
}

Compliant Solution

public static List<Result> getResults() {
  return Collections.emptyList();          // Compliant
}

public static Result[] getResults() {
  return new Result[0];
}

public static void main(String[] args) {
  for (Result result: getResults()) {
    /* ... */
  }
}

See

  • CERT, MSC19-C. - For functions that return an array, prefer returning an empty array over a null value
  • CERT, MET55-J. - Return an empty array or collection instead of a null value for methods that return an array or collection

Remove this unused method parameter "cause".
Open

    public void cancelBuild(Cause cause, ParametersAction parametersAction) {

Unused parameters are misleading. Whatever the values passed to such parameters, the behavior will be the same.

Noncompliant Code Example

void doSomething(int a, int b) {     // "b" is unused
  compute(a);
}

Compliant Solution

void doSomething(int a) {
  compute(a);
}

Exceptions

The rule will not raise issues for unused parameters:

  • that are annotated with @javax.enterprise.event.Observes
  • in overrides and implementation methods
  • in interface default methods
  • in non-private methods that only throw or that have empty bodies
  • in annotated methods, unless the annotation is @SuppressWarning("unchecked") or @SuppressWarning("rawtypes"), in which case the annotation will be ignored
  • in overridable methods (non-final, or not member of a final class, non-static, non-private), if the parameter is documented with a proper javadoc.
@Override
void doSomething(int a, int b) {     // no issue reported on b
  compute(a);
}

public void foo(String s) {
  // designed to be extended but noop in standard case
}

protected void bar(String s) {
  //open-closed principle
}

public void qix(String s) {
  throw new UnsupportedOperationException("This method should be implemented in subclasses");
}

/**
 * @param s This string may be use for further computation in overriding classes
 */
protected void foobar(int a, String s) { // no issue, method is overridable and unused parameter has proper javadoc
  compute(a);
}

See

  • CERT, MSC12-C. - Detect and remove code that has no effect or is never executed

Define a constant instead of duplicating this literal "count" 3 times.
Open

                            json.getInt("count"),

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Define a constant instead of duplicating this literal "build" 3 times.
Open

                            json.getInt("build"),

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

This block of commented-out lines of code should be removed.
Open

                        executingDirectory = (String) checkoutDirParameter.getValue();//"%" + CHECKOUT_DIRECTORY_PARAMETER + "%";

Programmers should not comment out code as it bloats programs and reduces readability.

Unused code should be deleted and can be retrieved from source control history if required.

Either re-interrupt this method or rethrow the "InterruptedException" that can be caught here.
Open

        } catch (IOException | InterruptedException e) {

InterruptedExceptions should never be ignored in the code, and simply logging the exception counts in this case as "ignoring". The throwing of the InterruptedException clears the interrupted state of the Thread, so if the exception is not handled properly the fact that the thread was interrupted will be lost. Instead, InterruptedExceptions should either be rethrown - immediately or after cleaning up the method's state - or the thread should be re-interrupted by calling Thread.interrupt() even if this is supposed to be a single-threaded application. Any other course of action risks delaying thread shutdown and loses the information that the thread was interrupted - probably without finishing its task.

Similarly, the ThreadDeath exception should also be propagated. According to its JavaDoc:

If ThreadDeath is caught by a method, it is important that it be rethrown so that the thread actually dies.

Noncompliant Code Example

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) { // Noncompliant; logging is not enough
    LOGGER.log(Level.WARN, "Interrupted!", e);
  }
}

Compliant Solution

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) {
    LOGGER.log(Level.WARN, "Interrupted!", e);
    // Restore interrupted state...
    Thread.currentThread().interrupt();
  }
}

See

This block of commented-out lines of code should be removed.
Open

                // logger.println(String.format("%s - Error on getTrendReportByXML: %s ", dateFormatter.getDate(), e));

Programmers should not comment out code as it bloats programs and reduces readability.

Unused code should be deleted and can be retrieved from source control history if required.

String contains no format specifiers.
Open

                listener.getLogger().println(String.format("No report folder was deleted"));

Because printf-style format strings are interpreted at runtime, rather than validated by the compiler, they can contain errors that result in the wrong strings being created. This rule statically validates the correlation of printf-style format strings to their arguments when calling the format(...) methods of java.util.Formatter, java.lang.String, java.io.PrintStream, MessageFormat, and java.io.PrintWriter classes and the printf(...) methods of java.io.PrintStream or java.io.PrintWriter classes.

Noncompliant Code Example

String.format("First {0} and then {1}", "foo", "bar");  //Noncompliant. Looks like there is a confusion with the use of {{java.text.MessageFormat}}, parameters "foo" and "bar" will be simply ignored here
String.format("Display %3$d and then %d", 1, 2, 3);   //Noncompliant; the second argument '2' is unused
String.format("Too many arguments %d and %d", 1, 2, 3);  //Noncompliant; the third argument '3' is unused
String.format("First Line\n");   //Noncompliant; %n should be used in place of \n to produce the platform-specific line separator
String.format("Is myObject null ? %b", myObject);   //Noncompliant; when a non-boolean argument is formatted with %b, it prints true for any nonnull value, and false for null. Even if intended, this is misleading. It's better to directly inject the boolean value (myObject == null in this case)
String.format("value is " + value); // Noncompliant
String s = String.format("string without arguments"); // Noncompliant

MessageFormat.format("Result '{0}'.", value); // Noncompliant; String contains no format specifiers. (quote are discarding format specifiers)
MessageFormat.format("Result {0}.", value, value);  // Noncompliant; 2nd argument is not used
MessageFormat.format("Result {0}.", myObject.toString()); // Noncompliant; no need to call toString() on objects

java.util.Logger logger;
logger.log(java.util.logging.Level.SEVERE, "Result {0}.", myObject.toString()); // Noncompliant; no need to call toString() on objects
logger.log(java.util.logging.Level.SEVERE, "Result.", new Exception()); // compliant, parameter is an exception
logger.log(java.util.logging.Level.SEVERE, "Result '{0}'", 14); // Noncompliant - String contains no format specifiers.
logger.log(java.util.logging.Level.SEVERE, "Result " + param, exception); // Noncompliant; Lambda should be used to differ string concatenation.

org.slf4j.Logger slf4jLog;
org.slf4j.Marker marker;

slf4jLog.debug(marker, "message {}");
slf4jLog.debug(marker, "message", 1); // Noncompliant - String contains no format specifiers.

org.apache.logging.log4j.Logger log4jLog;
log4jLog.debug("message", 1); // Noncompliant - String contains no format specifiers.

Compliant Solution

String.format("First %s and then %s", "foo", "bar");
String.format("Display %2$d and then %d", 1, 3);
String.format("Too many arguments %d %d", 1, 2);
String.format("First Line%n");
String.format("Is myObject null ? %b", myObject == null);
String.format("value is %d", value);
String s = "string without arguments";

MessageFormat.format("Result {0}.", value);
MessageFormat.format("Result '{0}'  =  {0}", value);
MessageFormat.format("Result {0}.", myObject);

java.util.Logger logger;
logger.log(java.util.logging.Level.SEVERE, "Result {0}.", myObject);
logger.log(java.util.logging.Level.SEVERE, "Result {0}'", 14);
logger.log(java.util.logging.Level.SEVERE, exception, () -> "Result " + param);

org.slf4j.Logger slf4jLog;
org.slf4j.Marker marker;

slf4jLog.debug(marker, "message {}");
slf4jLog.debug(marker, "message {}", 1);

org.apache.logging.log4j.Logger log4jLog;
log4jLog.debug("message {}", 1);

See

Severity
Category
Status
Source
Language