jenkinsci/hpe-application-automation-tools-plugin

View on GitHub

Showing 716 of 716 total issues

Replace this use of System.out or System.err by a logger.
Open

                    System.out.println("ERROR:: loginToMC failed with null oauth cookie.");

When logging a message there are several important requirements which must be fulfilled:

  • The user must be able to easily retrieve the logs
  • The format of all logged message must be uniform to allow the user to easily read the log
  • Logged data must actually be recorded
  • Sensitive data must only be logged securely

If a program directly writes to the standard outputs, there is absolutely no way to comply with those requirements. That's why defining and using a dedicated logger is highly recommended.

Noncompliant Code Example

System.out.println("My Message");  // Noncompliant

Compliant Solution

logger.log("My Message");

See

Replace this use of System.out or System.err by a logger.
Open

                System.out.println(requestMethod + " " + connectionUrl + " return is null.");

When logging a message there are several important requirements which must be fulfilled:

  • The user must be able to easily retrieve the logs
  • The format of all logged message must be uniform to allow the user to easily read the log
  • Logged data must actually be recorded
  • Sensitive data must only be logged securely

If a program directly writes to the standard outputs, there is absolutely no way to comply with those requirements. That's why defining and using a dedicated logger is highly recommended.

Noncompliant Code Example

System.out.println("My Message");  // Noncompliant

Compliant Solution

logger.log("My Message");

See

Extract this nested try block into a separate method.
Open

                try {

Nesting try/catch blocks severely impacts the readability of source code because it makes it too difficult to understand which block will catch which exception.

Refactor this method to reduce its Cognitive Complexity from 26 to the 15 allowed.
Open

    public void cancelBuild(Cause cause, ParametersAction parametersAction) {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Catch Exception instead of Throwable.
Open

        } catch (Throwable throwable) {

Throwable is the superclass of all errors and exceptions in Java. Error is the superclass of all errors, which are not meant to be caught by applications.

Catching either Throwable or Error will also catch OutOfMemoryError and InternalError, from which an application should not attempt to recover.

Noncompliant Code Example

try { /* ... */ } catch (Throwable t) { /* ... */ }
try { /* ... */ } catch (Error e) { /* ... */ }

Compliant Solution

try { /* ... */ } catch (RuntimeException e) { /* ... */ }
try { /* ... */ } catch (MyException e) { /* ... */ }

See

Define a constant instead of duplicating this literal "sendAfter" 3 times.
Open

            if (json.containsKey("sendAfter")) {

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Constructor has 22 parameters, which is greater than 7 authorized.
Open

    public PcModel(String serverAndPort, String pcServerName, String credentialsId, String almDomain, String almProject,

A long parameter list can indicate that a new structure should be created to wrap the numerous parameters or that the function is doing too many things.

Noncompliant Code Example

With a maximum number of 4 parameters:

public void doSomething(int param1, int param2, int param3, String param4, long param5) {
...
}

Compliant Solution

public void doSomething(int param1, int param2, int param3, String param4) {
...
}

Exceptions

Methods annotated with :

  • Spring's @RequestMapping (and related shortcut annotations, like @GetRequest)
  • JAX-RS API annotations (like @javax.ws.rs.GET)
  • Bean constructor injection with @org.springframework.beans.factory.annotation.Autowired
  • CDI constructor injection with @javax.inject.Inject
  • @com.fasterxml.jackson.annotation.JsonCreator

may have a lot of parameters, encapsulation being possible. Such methods are therefore ignored.

This branch's code block is the same as the block for the branch on line 138.
Open

        }else if(response.getJsonObject() != null && response.getJsonObject().containsKey("error") && response.getJsonObject().getAsString("error").equals("true")){
            return null;
        }

Having two cases in a switch statement or two branches in an if chain with the same implementation is at best duplicate code, and at worst a coding error. If the same logic is truly needed for both instances, then in an if chain they should be combined, or for a switch, one should fall through to the other.

Noncompliant Code Example

switch (i) {
  case 1:
    doFirstThing();
    doSomething();
    break;
  case 2:
    doSomethingDifferent();
    break;
  case 3:  // Noncompliant; duplicates case 1's implementation
    doFirstThing();
    doSomething();
    break;
  default:
    doTheRest();
}

if (a >= 0 && a < 10) {
  doFirstThing();
  doTheThing();
}
else if (a >= 10 && a < 20) {
  doTheOtherThing();
}
else if (a >= 20 && a < 50) {
  doFirstThing();
  doTheThing();  // Noncompliant; duplicates first condition
}
else {
  doTheRest();
}

Exceptions

Blocks in an if chain that contain a single line of code are ignored, as are blocks in a switch statement that contain a single line of code with or without a following break.

if (a == 1) {
  doSomething();  //no issue, usually this is done on purpose to increase the readability
} else if (a == 2) {
  doSomethingElse();
} else {
  doSomething();
}

But this exception does not apply to if chains without else-s, or to switch-es without default clauses when all branches have the same single line of code. In case of if chains with else-s, or of switch-es with default clauses, rule {rule:java:S3923} raises a bug.

if (a == 1) {
  doSomething();  //Noncompliant, this might have been done on purpose but probably not
} else if (a == 2) {
  doSomething();
}

Remove this useless assignment to local variable "labelPd".
Open

            LabelParameterDefinition labelPd = (LabelParameterDefinition) pd;

A dead store happens when a local variable is assigned a value that is not read by any subsequent instruction. Calculating or retrieving a value only to then overwrite it or throw it away, could indicate a serious error in the code. Even if it's not an error, it is at best a waste of resources. Therefore all calculated values should be used.

Noncompliant Code Example

i = a + b; // Noncompliant; calculation result not used before value is overwritten
i = compute();

Compliant Solution

i = a + b;
i += compute();

Exceptions

This rule ignores initializations to -1, 0, 1, null, true, false and "".

See

Change the visibility of this constructor to "protected".
Open

    public AbstractResultQueueImpl() {

Abstract classes should not have public constructors. Constructors of abstract classes can only be called in constructors of their subclasses. So there is no point in making them public. The protected modifier should be enough.

Noncompliant Code Example

public abstract class AbstractClass1 {
    public AbstractClass1 () { // Noncompliant, has public modifier
        // do something here
    }
}

Compliant Solution

public abstract class AbstractClass2 {
    protected AbstractClass2 () {
        // do something here
    }
}

Either re-interrupt this method or rethrow the "InterruptedException" that can be caught here.
Open

        } catch (IOException | InterruptedException e) {

InterruptedExceptions should never be ignored in the code, and simply logging the exception counts in this case as "ignoring". The throwing of the InterruptedException clears the interrupted state of the Thread, so if the exception is not handled properly the fact that the thread was interrupted will be lost. Instead, InterruptedExceptions should either be rethrown - immediately or after cleaning up the method's state - or the thread should be re-interrupted by calling Thread.interrupt() even if this is supposed to be a single-threaded application. Any other course of action risks delaying thread shutdown and loses the information that the thread was interrupted - probably without finishing its task.

Similarly, the ThreadDeath exception should also be propagated. According to its JavaDoc:

If ThreadDeath is caught by a method, it is important that it be rethrown so that the thread actually dies.

Noncompliant Code Example

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) { // Noncompliant; logging is not enough
    LOGGER.log(Level.WARN, "Interrupted!", e);
  }
}

Compliant Solution

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) {
    LOGGER.log(Level.WARN, "Interrupted!", e);
    // Restore interrupted state...
    Thread.currentThread().interrupt();
  }
}

See

Remove this unused method parameter "aClass".
Open

        public boolean isApplicable(Class<? extends AbstractProject> aClass) {

Unused parameters are misleading. Whatever the values passed to such parameters, the behavior will be the same.

Noncompliant Code Example

void doSomething(int a, int b) {     // "b" is unused
  compute(a);
}

Compliant Solution

void doSomething(int a) {
  compute(a);
}

Exceptions

The rule will not raise issues for unused parameters:

  • that are annotated with @javax.enterprise.event.Observes
  • in overrides and implementation methods
  • in interface default methods
  • in non-private methods that only throw or that have empty bodies
  • in annotated methods, unless the annotation is @SuppressWarning("unchecked") or @SuppressWarning("rawtypes"), in which case the annotation will be ignored
  • in overridable methods (non-final, or not member of a final class, non-static, non-private), if the parameter is documented with a proper javadoc.
@Override
void doSomething(int a, int b) {     // no issue reported on b
  compute(a);
}

public void foo(String s) {
  // designed to be extended but noop in standard case
}

protected void bar(String s) {
  //open-closed principle
}

public void qix(String s) {
  throw new UnsupportedOperationException("This method should be implemented in subclasses");
}

/**
 * @param s This string may be use for further computation in overriding classes
 */
protected void foobar(int a, String s) { // no issue, method is overridable and unused parameter has proper javadoc
  compute(a);
}

See

  • CERT, MSC12-C. - Detect and remove code that has no effect or is never executed

Define a constant instead of duplicating this literal "tagTypeName" 4 times.
Open

                                .setName(jsonObject.getString("tagTypeName")))

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Define a constant instead of duplicating this literal "uploadSSC section was not found" 3 times.
Open

                logger.warn("uploadSSC section was not found");

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Provide the parametrized type for this generic.
Open

            Map bsiJsonAsMap = new ObjectMapper().readValue(bsi64,

Generic types shouldn't be used raw (without type parameters) in variable declarations or return values. Doing so bypasses generic type checking, and defers the catch of unsafe code to runtime.

Noncompliant Code Example

List myList; // Noncompliant
Set mySet; // Noncompliant

Compliant Solution

List<String> myList;
Set<? extends Number> mySet;

Refactor this method to reduce its Cognitive Complexity from 24 to the 15 allowed.
Open

    public void setModel(OctaneServerSettingsModel newModel) {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Change this code to use a stronger protocol.
Open

            sslcontext = SSLContext.getInstance("SSL");

This rule raises an issue when an insecure TLS protocol version is used (ie: a protocol different from "TLSv1.2", "TLSv1.3", "DTLSv1.2" or "DTLSv1.3").

Noncompliant Code Example

javax.net.ssl.SSLContext library:

context = SSLContext.getInstance("TLSv1.1"); // Noncompliant

okhttp library:

ConnectionSpec spec = new ConnectionSpec.Builder(ConnectionSpec.MODERN_TLS)
      .tlsVersions(TlsVersion.TLS_1_1) // Noncompliant
      .build();

Compliant Solution

javax.net.ssl.SSLContext library:

context = SSLContext.getInstance("TLSv1.2"); // Compliant

okhttp library:

ConnectionSpec spec = new ConnectionSpec.Builder(ConnectionSpec.MODERN_TLS)
      .tlsVersions(TlsVersion.TLS_1_2) // Compliant
      .build();

See

This block of commented-out lines of code should be removed.
Open

    public void setRunFromAlmModel(RunFromAlmModel runFromAlmModel){

Programmers should not comment out code as it bloats programs and reduces readability.

Unused code should be deleted and can be retrieved from source control history if required.

Refactor this method to reduce its Cognitive Complexity from 28 to the 15 allowed.
Open

    public void perform(Run<?, ?> build, FilePath workspace, Launcher launcher, TaskListener listener)

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Add a private constructor to hide the implicit public one.
Open

public class ModelFactory {

Utility classes, which are collections of static members, are not meant to be instantiated. Even abstract utility classes, which can be extended, should not have public constructors.

Java adds an implicit public constructor to every class which does not define at least one explicitly. Hence, at least one non-public constructor should be defined.

Noncompliant Code Example

class StringUtils { // Noncompliant

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Compliant Solution

class StringUtils { // Compliant

  private StringUtils() {
    throw new IllegalStateException("Utility class");
  }

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Exceptions

When class contains public static void main(String[] args) method it is not considered as utility class and will be ignored by this rule.

Severity
Category
Status
Source
Language