thi-ng/umbrella

View on GitHub

Showing 333 of 1,883 total issues

Function traceLines has a Cognitive Complexity of 40 (exceeds 5 allowed). Consider refactoring.
Open

export const traceLines = (
    opts: TraceOpts,
    order: Fn<GridIterOpts2D, Iterable<[number, number]>>,
    border: Predicate<[number, number]>,
    tx: PointTransform2D,
Severity: Minor
Found in packages/geom-trace-bitmap/src/trace.ts - About 6 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function deserialize has a Cognitive Complexity of 39 (exceeds 5 allowed). Consider refactoring.
Open

export const deserialize = (
    src: Uint8Array | ArrayBufferLike,
    start = 0,
    end = src.byteLength
) => {
Severity: Minor
Found in packages/msgpack/src/deserialize.ts - About 5 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function __findHoleBridge has a Cognitive Complexity of 31 (exceeds 5 allowed). Consider refactoring.
Open

const __findHoleBridge = (hole: Vertex, outer: Vertex): Nullable<Vertex> => {
    const { x: hx, y: hy } = hole;
    let v = outer;
    let qx = -Infinity;
    let px: number, py: number;
Severity: Minor
Found in packages/geom-tessellate/src/earcut-complex.ts - About 4 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function distanceTransform has a Cognitive Complexity of 31 (exceeds 5 allowed). Consider refactoring.
Open

export const distanceTransform = (
    {
        data: spix,
        size: [width, height],
        stride: [sx, sy],
Severity: Minor
Found in packages/distance-transform/src/transform.ts - About 4 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function outputProc has a Cognitive Complexity of 29 (exceeds 5 allowed). Consider refactoring.
Open

export const outputProc: Processor = async (spec, input, ctx) => {
    const opts = <OutputSpec>spec;
    const outDir = resolve(ctx.opts.outDir || ".");
    let output = input.clone();
    if (opts.blurhash) {
Severity: Minor
Found in packages/imago/src/ops/output.ts - About 4 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function el has a Cognitive Complexity of 28 (exceeds 5 allowed). Consider refactoring.
Open

        el: ({ children }, opts, acc) => {
            const [name, { children: $attribs }, body] = children!;
            if (opts.ignoreElements?.includes(name.result)) return;
            const attribs: any = {};
            const el: Element = [name.result, attribs];
Severity: Minor
Found in packages/hiccup-html-parse/src/index.ts - About 4 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function __readFloat has a Cognitive Complexity of 26 (exceeds 5 allowed). Consider refactoring.
Open

const __readFloat = (src: string, index: number) => {
    index = __skipWS(src, index);
    let signOk = true;
    let dotOk = true;
    let expOk = false;
Severity: Minor
Found in packages/geom/src/path-from-svg.ts - About 3 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function dropdown has a Cognitive Complexity of 26 (exceeds 5 allowed). Consider refactoring.
Open

export const dropdown = (
    gui: IMGUI,
    layout: IGridLayout<any> | LayoutBox,
    id: string,
    sel: number,
Severity: Minor
Found in packages/imgui/src/components/dropdown.ts - About 3 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function __sortLinked has a Cognitive Complexity of 25 (exceeds 5 allowed). Consider refactoring.
Open

const __sortLinked = (list: Nullable<Vertex>) => {
    let numMerges;
    let inSize = 1;

    do {
Severity: Minor
Found in packages/geom-tessellate/src/earcut-complex.ts - About 3 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function circle has a Cognitive Complexity of 24 (exceeds 5 allowed). Consider refactoring.
Open

export const circle = (
    canvas: Canvas,
    cx: number,
    cy: number,
    r: number,
Severity: Minor
Found in packages/text-canvas/src/circle.ts - About 3 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function fillPoly has a Cognitive Complexity of 24 (exceeds 5 allowed). Consider refactoring.
Open

export const fillPoly = <T extends any[] | TypedArray, P>(
    grid: IGrid2D<T, P>,
    pts: ArrayLike<number>[],
    val: P | Shader2D<P>
) => {
Severity: Minor
Found in packages/rasterize/src/poly.ts - About 3 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function __drawInstanced has a Cognitive Complexity of 24 (exceeds 5 allowed). Consider refactoring.
Open

const __drawInstanced = (gl: WebGLRenderingContext, spec: ModelSpec) => {
    const isGL2 = isGL2Context(gl);
    const ext = !isGL2 ? gl.getExtension("ANGLE_instanced_arrays") : undefined;
    if (!(isGL2 || ext)) {
        error("instancing not supported");
Severity: Minor
Found in packages/webgl/src/draw.ts - About 3 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function list has a Cognitive Complexity of 24 (exceeds 5 allowed). Consider refactoring.
Open

        list: (scope, ctx, acc) => {
            const children = scope.children![0].children!;
            const stack: any[][] = [
                [children[0].id === "ulitem" ? "ul" : "ol"],
            ];
Severity: Minor
Found in packages/hiccup-markdown/src/parse.ts - About 3 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function __serialize has a Cognitive Complexity of 24 (exceeds 5 allowed). Consider refactoring.
Open

const __serialize = (tree: any, ctx: any, state: SerializeState): string =>
    tree == null
        ? ""
        : Array.isArray(tree)
        ? __serializeArray(tree, ctx, state)
Severity: Minor
Found in packages/hiccup-markdown/src/serialize.ts - About 3 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function defuzz has a Cognitive Complexity of 24 (exceeds 5 allowed). Consider refactoring.
Open

export const defuzz = <I extends LVarSet<string>, O extends LVarSet<string>>(
    ins: I,
    outs: O,
    rules: Rule<I, O>[],
    vals: Partial<Record<keyof I, number>>,
Severity: Minor
Found in packages/fuzzy/src/defuzz.ts - About 3 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function update has a Cognitive Complexity of 23 (exceeds 5 allowed). Consider refactoring.
Open

    async update(curr: T[]) {
        if (!curr) return;
        const { keyFn, items, ctor, cache, el: parent } = this;
        const currItems: KListItem[] = [];
        const currCache = new Map<NumOrString, KListItem>();
Severity: Minor
Found in packages/rdom/src/klist.ts - About 3 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function __encodeBin has a Cognitive Complexity of 23 (exceeds 5 allowed). Consider refactoring.
Open

    (x: any): Type =>
        isNumber(x)
            ? Math.floor(x) !== x
                ? Type.FLOAT
                : Type.INT
Severity: Minor
Found in packages/bencode/src/encode.ts - About 3 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function computeDiff has a Cognitive Complexity of 22 (exceeds 5 allowed). Consider refactoring.
Open

export const computeDiff = (a: string, b: string) => {
    const edits = diffArray(
        a.split("\n"),
        b.split("\n"),
        "only-distance-linear"
Severity: Minor
Found in packages/hdiff/src/diff.ts - About 3 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function expand has a Cognitive Complexity of 22 (exceeds 5 allowed). Consider refactoring.
Open

export const expand = (
    acc: string[],
    parent: any[],
    rules: any[],
    opts: CSSOpts
Severity: Minor
Found in packages/hiccup-css/src/impl.ts - About 3 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function fieldType has a Cognitive Complexity of 22 (exceeds 5 allowed). Consider refactoring.
Open

export const fieldType = (
    f: Field,
    parent: Struct | Union | FuncPointer,
    coll: TypeColl,
    opts: CodeGenOpts
Severity: Minor
Found in packages/wasm-api-bindgen/src/zig.ts - About 3 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Severity
Category
Status
Source
Language