Showing 710 of 710 total issues
Similar blocks of code found in 3 locations. Consider refactoring. Open
} else if (node.type === 'Identifier') {
const propTypesObject = variableUtil.findVariableByName(context, node, node.name);
if (propTypesObject && propTypesObject.properties) {
checkProperties(propTypesObject.properties);
}
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 51.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 3 locations. Consider refactoring. Open
} else if (node.type === 'Identifier') {
const propTypesObject = variableUtil.findVariableByName(context, node, node.name);
if (propTypesObject && propTypesObject.properties) {
checkSorted(propTypesObject.properties);
}
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 51.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
const namedClass = (
(node.type === 'ClassDeclaration' || node.type === 'ClassExpression')
&& node.id
&& !!node.id.name
);
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 51.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 3 locations. Consider refactoring. Open
} else if (firstArg.type === 'Identifier') {
const variable = variableUtil.findVariableByName(context, node, firstArg.name);
if (variable && variable.properties) {
checkSorted(variable.properties);
}
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 51.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
if (callbacksLast) {
if (!previousIsCallback && currentIsCallback) {
// Entering the callback prop section
return decl;
}
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 51.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
const namedFunctionDeclaration = (
(node.type === 'FunctionDeclaration' || node.type === 'FunctionExpression')
&& node.id
&& !!node.id.name
);
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 51.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Function readDefaultReactVersionFromContext
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
function readDefaultReactVersionFromContext(context) {
// .eslintrc shared settings (https://eslint.org/docs/user-guide/configuring#adding-shared-settings)
if (context.settings && context.settings.react && context.settings.react.defaultVersion) {
let settingsDefaultVersion = context.settings.react.defaultVersion;
if (typeof settingsDefaultVersion !== 'string') {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Avoid deeply nested control flow statements. Open
if (isFunctionType(func)) {
let res = func.body;
if (res.type === 'BlockStatement') {
res = astUtil.findReturnStatement(func);
if (res) {
Function getKeyValue
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
function getKeyValue(context, node) {
if (node.type === 'ObjectTypeProperty') {
const tokens = getFirstTokens(context, node, 2);
return (tokens[0].value === '+' || tokens[0].value === '-'
? tokens[1].value
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Avoid deeply nested control flow statements. Open
if (returnTypeFunction.length === 0) {
// Cannot find identifier in current scope. It might be an exported type.
this.shouldIgnorePropTypes = true;
return;
}
Function getFlowVersionFromContext
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
function getFlowVersionFromContext(context) {
let confVer = defaultVersion;
// .eslintrc shared settings (https://eslint.org/docs/user-guide/configuring#adding-shared-settings)
if (context.settings.react && context.settings.react.flowVersion) {
let flowVersion = context.settings.react.flowVersion;
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function create
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
create(context) {
const config = context.options[0] || {};
const checkAliases = config.checkAliases || false;
const isApplicable = testReactVersion(context, '>= 16.3.0');
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Avoid deeply nested control flow statements. Open
if (c === entities[j]) {
report(context, messages.unescapedEntity, 'unescapedEntity', {
node,
loc: { line: i, column: start + index },
data: {
Avoid deeply nested control flow statements. Open
if (isClosestJSXAncestor || ancestorConfig.applyToNestedElements) {
return ancestorConfig;
}
Avoid deeply nested control flow statements. Open
if (typeof relAttribute.value.expression.value === 'string') {
const parts = relAttribute.value.expression.value
.split('noreferrer')
.filter(Boolean);
return fixer.replaceText(relAttribute.value.expression, `"${parts.concat('noreferrer').join(' ')}"`);
Function validateBeforeSelfClosing
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
function validateBeforeSelfClosing(context, node, option) {
const sourceCode = getSourceCode(context);
const leftToken = getTokenBeforeClosingBracket(node);
const closingSlash = sourceCode.getTokenAfter(leftToken);
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function ruleFixer
has 6 arguments (exceeds 4 allowed). Consider refactoring. Open
function ruleFixer(context, fixStrategy, fixer, reportedNode, leftNode, rightNode) {
Function create
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
create(context) {
const options = context.options;
const hasLegacyOption = Array.isArray(options[0]);
const legacyOptions = hasLegacyOption ? options[0] : [];
// eslint-disable-next-line no-nested-ternary
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function checkProps
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
function checkProps(context, node) {
let sandboxAttributeFound = false;
if (node.arguments.length > 1) {
const props = node.arguments[1];
const sandboxProp = props.properties && props.properties.find((x) => x.type === 'Property' && x.key.name === 'sandbox');
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Avoid deeply nested control flow statements. Open
if (targetTestCond === relTestCond) {
const targetBlankIndex = [targetValue.expression.consequent.value, targetValue.expression.alternate.value].indexOf('_blank');
return relValues[targetBlankIndex];
}