Showing 142 of 142 total issues
Function sanitizeSpellParameterChanges
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
private function sanitizeSpellParameterChanges(array $spellParameterValues): array
{
$sanitizedChanges = [];
foreach (ModifierMutableSpellParameterCode::getPossibleValues() as $mutableSpellParameter) {
if (!array_key_exists($mutableSpellParameter, $spellParameterValues)) {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function sanitizeSpellParameterChanges
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
private function sanitizeSpellParameterChanges(array $spellParameterValues): array
{
$sanitizedChanges = [];
foreach (FormulaMutableSpellParameterCode::getPossibleValues() as $mutableSpellParameter) {
if (!\array_key_exists($mutableSpellParameter, $spellParameterValues)) {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method __construct
has 6 arguments (exceeds 4 allowed). Consider refactoring. Open
FormulaCode $formulaCode,
FormulasTable $formulasTable,
DistanceTable $distanceTable,
array $formulaSpellParameterValues = [],
array $modifiers = [],
The class FormulasTable has a coupling between objects value of 22. Consider to reduce the number of dependencies under 13. Open
class FormulasTable extends AbstractFileTable
{
protected function getDataFileName(): string
{
return __DIR__ . '/data/formulas.csv';
- Read upRead up
- Exclude checks
CouplingBetweenObjects
Since: 1.1.0
A class with too many dependencies has negative impacts on several quality aspects of a class. This includes quality criteria like stability, maintainability and understandability
Example
class Foo {
/**
* @var \foo\bar\X
*/
private $x = null;
/**
* @var \foo\bar\Y
*/
private $y = null;
/**
* @var \foo\bar\Z
*/
private $z = null;
public function setFoo(\Foo $foo) {}
public function setBar(\Bar $bar) {}
public function setBaz(\Baz $baz) {}
/**
* @return \SplObjectStorage
* @throws \OutOfRangeException
* @throws \InvalidArgumentException
* @throws \ErrorException
*/
public function process(\Iterator $it) {}
// ...
}
Source https://phpmd.org/rules/design.html#couplingbetweenobjects
The class Modifier has a coupling between objects value of 33. Consider to reduce the number of dependencies under 13. Open
class Modifier extends StrictObject
{
use ToFlatArrayTrait;
/** @var ModifierCode */
- Read upRead up
- Exclude checks
CouplingBetweenObjects
Since: 1.1.0
A class with too many dependencies has negative impacts on several quality aspects of a class. This includes quality criteria like stability, maintainability and understandability
Example
class Foo {
/**
* @var \foo\bar\X
*/
private $x = null;
/**
* @var \foo\bar\Y
*/
private $y = null;
/**
* @var \foo\bar\Z
*/
private $z = null;
public function setFoo(\Foo $foo) {}
public function setBar(\Bar $bar) {}
public function setBaz(\Baz $baz) {}
/**
* @return \SplObjectStorage
* @throws \OutOfRangeException
* @throws \InvalidArgumentException
* @throws \ErrorException
*/
public function process(\Iterator $it) {}
// ...
}
Source https://phpmd.org/rules/design.html#couplingbetweenobjects
The class Formula has a coupling between objects value of 38. Consider to reduce the number of dependencies under 13. Open
class Formula extends StrictObject
{
use ToFlatArrayTrait;
/** @var FormulaCode */
- Read upRead up
- Exclude checks
CouplingBetweenObjects
Since: 1.1.0
A class with too many dependencies has negative impacts on several quality aspects of a class. This includes quality criteria like stability, maintainability and understandability
Example
class Foo {
/**
* @var \foo\bar\X
*/
private $x = null;
/**
* @var \foo\bar\Y
*/
private $y = null;
/**
* @var \foo\bar\Z
*/
private $z = null;
public function setFoo(\Foo $foo) {}
public function setBar(\Bar $bar) {}
public function setBaz(\Baz $baz) {}
/**
* @return \SplObjectStorage
* @throws \OutOfRangeException
* @throws \InvalidArgumentException
* @throws \ErrorException
*/
public function process(\Iterator $it) {}
// ...
}
Source https://phpmd.org/rules/design.html#couplingbetweenobjects
The class ModifiersTable has a coupling between objects value of 28. Consider to reduce the number of dependencies under 13. Open
class ModifiersTable extends AbstractFileTable
{
use ToFlatArrayTrait;
/**
- Read upRead up
- Exclude checks
CouplingBetweenObjects
Since: 1.1.0
A class with too many dependencies has negative impacts on several quality aspects of a class. This includes quality criteria like stability, maintainability and understandability
Example
class Foo {
/**
* @var \foo\bar\X
*/
private $x = null;
/**
* @var \foo\bar\Y
*/
private $y = null;
/**
* @var \foo\bar\Z
*/
private $z = null;
public function setFoo(\Foo $foo) {}
public function setBar(\Bar $bar) {}
public function setBaz(\Baz $baz) {}
/**
* @return \SplObjectStorage
* @throws \OutOfRangeException
* @throws \InvalidArgumentException
* @throws \ErrorException
*/
public function process(\Iterator $it) {}
// ...
}
Source https://phpmd.org/rules/design.html#couplingbetweenobjects
Function toFlatArray
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
protected function toFlatArray(array $items): array
{
$flat = [];
foreach ($items as $item) {
if (\is_array($item)) {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Similar blocks of code found in 2 locations. Consider refactoring. Open
public function getCurrentPower(): ?Power
{
$powerWithAddition = $this->getPowerWithAddition();
$powerBonus = $this->getParameterBonusFromModifiers(ModifierMutableSpellParameterCode::POWER);
if (!$powerWithAddition && $powerBonus === false) {
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 91.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
public function getCurrentSpellSpeed(): ?SpellSpeed
{
$spellSpeedWithAddition = $this->getSpellSpeedWithAddition();
$spellSpeedBonus = $this->getParameterBonusFromModifiers(ModifierMutableSpellParameterCode::SPELL_SPEED);
if (!$spellSpeedWithAddition && $spellSpeedBonus === false) {
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 91.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Function getRealmsAffectionsSum
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
private function getRealmsAffectionsSum(): array
{
$baseRealmsAffection = $this->formulasTable->getRealmsAffection($this->getFormulaCode());
$realmsAffectionsSum = [
// like daily => -2
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Avoid using static access to class '\Granam\Integer\Tools\ToInteger' in method '__construct'. Open
$this->maximal = ToInteger::toPositiveInteger($values[1] ?? null);
- Read upRead up
- Exclude checks
StaticAccess
Since: 1.4.0
Static access causes unexchangeable dependencies to other classes and leads to hard to test code. Avoid using static access at all costs and instead inject dependencies through the constructor. The only case when static access is acceptable is when used for factory methods.
Example
class Foo
{
public function bar()
{
Bar::baz();
}
}
Source https://phpmd.org/rules/cleancode.html#staticaccess
Avoid using static access to class '\Granam\Integer\Tools\ToInteger' in method '__construct'. Open
$values[0] = ToInteger::toPositiveInteger($values[0] ?? null);
- Read upRead up
- Exclude checks
StaticAccess
Since: 1.4.0
Static access causes unexchangeable dependencies to other classes and leads to hard to test code. Avoid using static access at all costs and instead inject dependencies through the constructor. The only case when static access is acceptable is when used for factory methods.
Example
class Foo
{
public function bar()
{
Bar::baz();
}
}
Source https://phpmd.org/rules/cleancode.html#staticaccess
Avoid using static access to class '\Granam\Tools\ValueDescriber' in method 'sanitizeSpellParameterChanges'. Open
'Expected integer, got ' . ValueDescriber::describe($spellParameterValues[$mutableSpellParameter])
- Read upRead up
- Exclude checks
StaticAccess
Since: 1.4.0
Static access causes unexchangeable dependencies to other classes and leads to hard to test code. Avoid using static access at all costs and instead inject dependencies through the constructor. The only case when static access is acceptable is when used for factory methods.
Example
class Foo
{
public function bar()
{
Bar::baz();
}
}
Source https://phpmd.org/rules/cleancode.html#staticaccess
Avoid using static access to class '\DrdPlus\Codes\Theurgist\ModifierCode' in method 'getModifierCodes'. Open
return ModifierCode::getIt($modifierValue);
- Read upRead up
- Exclude checks
StaticAccess
Since: 1.4.0
Static access causes unexchangeable dependencies to other classes and leads to hard to test code. Avoid using static access at all costs and instead inject dependencies through the constructor. The only case when static access is acceptable is when used for factory methods.
Example
class Foo
{
public function bar()
{
Bar::baz();
}
}
Source https://phpmd.org/rules/cleancode.html#staticaccess
Avoid using static access to class '\Granam\Tools\ValueDescriber' in method 'sub'. Open
'With zero step can not be an addition changed by ' . ValueDescriber::describe($value)
- Read upRead up
- Exclude checks
StaticAccess
Since: 1.4.0
Static access causes unexchangeable dependencies to other classes and leads to hard to test code. Avoid using static access at all costs and instead inject dependencies through the constructor. The only case when static access is acceptable is when used for factory methods.
Example
class Foo
{
public function bar()
{
Bar::baz();
}
}
Source https://phpmd.org/rules/cleancode.html#staticaccess
Avoid using static access to class '\Granam\Integer\Tools\ToInteger' in method 'add'. Open
$this->getValue() + ToInteger::toInteger($value) // current addition is injected as second parameter
- Read upRead up
- Exclude checks
StaticAccess
Since: 1.4.0
Static access causes unexchangeable dependencies to other classes and leads to hard to test code. Avoid using static access at all costs and instead inject dependencies through the constructor. The only case when static access is acceptable is when used for factory methods.
Example
class Foo
{
public function bar()
{
Bar::baz();
}
}
Source https://phpmd.org/rules/cleancode.html#staticaccess
Avoid using static access to class '\Granam\Integer\Tools\ToInteger' in method 'getWithAddition'. Open
$additionValue = ToInteger::toInteger($additionValue);
- Read upRead up
- Exclude checks
StaticAccess
Since: 1.4.0
Static access causes unexchangeable dependencies to other classes and leads to hard to test code. Avoid using static access at all costs and instead inject dependencies through the constructor. The only case when static access is acceptable is when used for factory methods.
Example
class Foo
{
public function bar()
{
Bar::baz();
}
}
Source https://phpmd.org/rules/cleancode.html#staticaccess
Avoid using static access to class '\Granam\Integer\Tools\ToInteger' in method 'sanitizeSpellParameterChanges'. Open
$sanitizedValue = ToInteger::toInteger($spellParameterValues[$mutableSpellParameter]);
- Read upRead up
- Exclude checks
StaticAccess
Since: 1.4.0
Static access causes unexchangeable dependencies to other classes and leads to hard to test code. Avoid using static access at all costs and instead inject dependencies through the constructor. The only case when static access is acceptable is when used for factory methods.
Example
class Foo
{
public function bar()
{
Bar::baz();
}
}
Source https://phpmd.org/rules/cleancode.html#staticaccess
Avoid using static access to class '\Granam\Tools\ValueDescriber' in method 'getCheckedModifiers'. Open
'Expected instance of ' . Modifier::class . ', got ' . ValueDescriber::describe($modifier)
- Read upRead up
- Exclude checks
StaticAccess
Since: 1.4.0
Static access causes unexchangeable dependencies to other classes and leads to hard to test code. Avoid using static access at all costs and instead inject dependencies through the constructor. The only case when static access is acceptable is when used for factory methods.
Example
class Foo
{
public function bar()
{
Bar::baz();
}
}